基于去偏随机梯度下降的在线推理

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-07-27 DOI:10.1093/biomet/asad046
Ruijian Han, Lan Luo, Yuanyuan Lin, Jian Huang
{"title":"基于去偏随机梯度下降的在线推理","authors":"Ruijian Han, Lan Luo, Yuanyuan Lin, Jian Huang","doi":"10.1093/biomet/asad046","DOIUrl":null,"url":null,"abstract":"\n We propose a debiased stochastic gradient descent algorithm for online statistical inference with high-dimensional data. Our approach combines the debiasing technique developed in high-dimensional statistics with the stochastic gradient descent algorithm. It can be used for efficiently constructing confidence intervals in an online fashion. Our proposed algorithm has several appealing aspects: first, as a one-pass algorithm, it reduces the time complexity; in addition, each update step requires only the current data together with the previous estimate, which reduces the space complexity. We establish the asymptotic normality of the proposed estimator under mild conditions on the sparsity level of the parameter and the data distribution. We conduct numerical experiments to demonstrate the proposed debiased stochastic gradient descent algorithm reaches nominal coverage probability. Furthermore, we illustrate our method with a high-dimensional text dataset.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Online Inference with Debiased Stochastic Gradient Descent\",\"authors\":\"Ruijian Han, Lan Luo, Yuanyuan Lin, Jian Huang\",\"doi\":\"10.1093/biomet/asad046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We propose a debiased stochastic gradient descent algorithm for online statistical inference with high-dimensional data. Our approach combines the debiasing technique developed in high-dimensional statistics with the stochastic gradient descent algorithm. It can be used for efficiently constructing confidence intervals in an online fashion. Our proposed algorithm has several appealing aspects: first, as a one-pass algorithm, it reduces the time complexity; in addition, each update step requires only the current data together with the previous estimate, which reduces the space complexity. We establish the asymptotic normality of the proposed estimator under mild conditions on the sparsity level of the parameter and the data distribution. We conduct numerical experiments to demonstrate the proposed debiased stochastic gradient descent algorithm reaches nominal coverage probability. Furthermore, we illustrate our method with a high-dimensional text dataset.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad046\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种用于高维数据在线统计推断的去偏随机梯度下降算法。我们的方法结合了高维统计中的去偏技术和随机梯度下降算法。它可以用于以在线方式有效地构建置信区间。我们提出的算法有几个吸引人的方面:首先,作为一种单遍算法,它降低了时间复杂度;此外,每个更新步骤只需要当前数据和之前的估计数据,从而降低了空间复杂度。在参数稀疏性水平和数据分布的温和条件下,我们建立了所提估计量的渐近正态性。我们通过数值实验证明了所提出的去偏随机梯度下降算法达到了标称覆盖概率。此外,我们用一个高维文本数据集来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Inference with Debiased Stochastic Gradient Descent
We propose a debiased stochastic gradient descent algorithm for online statistical inference with high-dimensional data. Our approach combines the debiasing technique developed in high-dimensional statistics with the stochastic gradient descent algorithm. It can be used for efficiently constructing confidence intervals in an online fashion. Our proposed algorithm has several appealing aspects: first, as a one-pass algorithm, it reduces the time complexity; in addition, each update step requires only the current data together with the previous estimate, which reduces the space complexity. We establish the asymptotic normality of the proposed estimator under mild conditions on the sparsity level of the parameter and the data distribution. We conduct numerical experiments to demonstrate the proposed debiased stochastic gradient descent algorithm reaches nominal coverage probability. Furthermore, we illustrate our method with a high-dimensional text dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Robust Covariate-Balancing Method in Learning Optimal Individualized Treatment Regimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1