Aljoscha Gruler, Carlos L. Quintero-Araújo, Laura Calvet, A. Juan
{"title":"不确定性下的垃圾收集:一种基于可变邻域搜索的模拟启发式算法","authors":"Aljoscha Gruler, Carlos L. Quintero-Araújo, Laura Calvet, A. Juan","doi":"10.1504/EJIE.2017.10003619","DOIUrl":null,"url":null,"abstract":"Ongoing population growth in cities and increasing waste production has made the optimisation of urban waste management a critical task for local governments. Route planning in waste collection can be formulated as an extended version of the well-known vehicle routing problem, for which a wide range of solution methods already exist. Despite the fact that real-life applications are characterised by high uncertainty levels, most works on waste collection assume deterministic inputs. In order to partially close this literature gap, this paper first proposes a competitive metaheuristic algorithm based on a variable neighbourhood search framework for the deterministic waste collection problem. Then, this metaheuristic is extended to a simheuristic algorithm in order to deal with the stochastic problem version. This extension is achieved by integrating simulation into the metaheuristic framework, which also allows a closer risk analysis of the best-found stochastic solutions. Different computational experiments illustrate the potential of our methodology. [Received: 13 January 2016; Revised: 25 April 2016; Revised: 19 September 2016; Revised: 18 October 2016; Accepted: 25 October 2016]","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Waste collection under uncertainty: a simheuristic based on variable neighbourhood search\",\"authors\":\"Aljoscha Gruler, Carlos L. Quintero-Araújo, Laura Calvet, A. Juan\",\"doi\":\"10.1504/EJIE.2017.10003619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ongoing population growth in cities and increasing waste production has made the optimisation of urban waste management a critical task for local governments. Route planning in waste collection can be formulated as an extended version of the well-known vehicle routing problem, for which a wide range of solution methods already exist. Despite the fact that real-life applications are characterised by high uncertainty levels, most works on waste collection assume deterministic inputs. In order to partially close this literature gap, this paper first proposes a competitive metaheuristic algorithm based on a variable neighbourhood search framework for the deterministic waste collection problem. Then, this metaheuristic is extended to a simheuristic algorithm in order to deal with the stochastic problem version. This extension is achieved by integrating simulation into the metaheuristic framework, which also allows a closer risk analysis of the best-found stochastic solutions. Different computational experiments illustrate the potential of our methodology. [Received: 13 January 2016; Revised: 25 April 2016; Revised: 19 September 2016; Revised: 18 October 2016; Accepted: 25 October 2016]\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/EJIE.2017.10003619\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2017.10003619","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Waste collection under uncertainty: a simheuristic based on variable neighbourhood search
Ongoing population growth in cities and increasing waste production has made the optimisation of urban waste management a critical task for local governments. Route planning in waste collection can be formulated as an extended version of the well-known vehicle routing problem, for which a wide range of solution methods already exist. Despite the fact that real-life applications are characterised by high uncertainty levels, most works on waste collection assume deterministic inputs. In order to partially close this literature gap, this paper first proposes a competitive metaheuristic algorithm based on a variable neighbourhood search framework for the deterministic waste collection problem. Then, this metaheuristic is extended to a simheuristic algorithm in order to deal with the stochastic problem version. This extension is achieved by integrating simulation into the metaheuristic framework, which also allows a closer risk analysis of the best-found stochastic solutions. Different computational experiments illustrate the potential of our methodology. [Received: 13 January 2016; Revised: 25 April 2016; Revised: 19 September 2016; Revised: 18 October 2016; Accepted: 25 October 2016]
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.