带承插式抗剪连接件的复合地下室墙体的弯曲试验

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Magazine of Concrete Research Pub Date : 2023-05-24 DOI:10.1680/jmacr.22.00326
J. Sim, J. Mun, Jong-Kook Hong, Jong-Cheol Jeon, Sanghee Kim, Keun-Hyeok Yang
{"title":"带承插式抗剪连接件的复合地下室墙体的弯曲试验","authors":"J. Sim, J. Mun, Jong-Kook Hong, Jong-Cheol Jeon, Sanghee Kim, Keun-Hyeok Yang","doi":"10.1680/jmacr.22.00326","DOIUrl":null,"url":null,"abstract":"This study examined the effect of a developed socket-type shear connector (SSC) on the flexural behavior of a composite basement wall. Twelve composite basement walls (CBW) composed of cast-in-place piles (CIPs) produced with H-shaped steel beams or reinforcing steel bars were prepared by varying the arrangement method and amount of SSC. Two-point loading was applied to simply supported CBW specimens. The test results showed that the CBW specimens with higher amounts of SSC had a higher effective stiffness in the elastic state and moment capacity in the ultimate state, irrespective of the cross-sectional details of the CIP. These trends were particularly prominent for the CBW specimens when SSC used a reinforced steel plate. The post-peak behavior of CBW specimens subjected to a simulated load with a negative external moment, in particular, tended to be more ductile. Consequently, a higher degree of composite action was fully exerted on the composite walls with higher SSC amounts. The nominal partially composite-to-full composite flexural capacity ratios (Mpc/Mfc) of the CBW specimens subjected to the simulated loads with positive and negative external moments can be calculated as 0.83 and 0.91, and 0.79 and 0.90, respectively, at 0.5 and 0.75ηsc using established equations for the sectional details of CBWs with SSC, where ηsc is the normalized shear connector capacity specified in AISC 360-16.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexural tests on composite basement walls with socket-type shear connectors\",\"authors\":\"J. Sim, J. Mun, Jong-Kook Hong, Jong-Cheol Jeon, Sanghee Kim, Keun-Hyeok Yang\",\"doi\":\"10.1680/jmacr.22.00326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the effect of a developed socket-type shear connector (SSC) on the flexural behavior of a composite basement wall. Twelve composite basement walls (CBW) composed of cast-in-place piles (CIPs) produced with H-shaped steel beams or reinforcing steel bars were prepared by varying the arrangement method and amount of SSC. Two-point loading was applied to simply supported CBW specimens. The test results showed that the CBW specimens with higher amounts of SSC had a higher effective stiffness in the elastic state and moment capacity in the ultimate state, irrespective of the cross-sectional details of the CIP. These trends were particularly prominent for the CBW specimens when SSC used a reinforced steel plate. The post-peak behavior of CBW specimens subjected to a simulated load with a negative external moment, in particular, tended to be more ductile. Consequently, a higher degree of composite action was fully exerted on the composite walls with higher SSC amounts. The nominal partially composite-to-full composite flexural capacity ratios (Mpc/Mfc) of the CBW specimens subjected to the simulated loads with positive and negative external moments can be calculated as 0.83 and 0.91, and 0.79 and 0.90, respectively, at 0.5 and 0.75ηsc using established equations for the sectional details of CBWs with SSC, where ηsc is the normalized shear connector capacity specified in AISC 360-16.\",\"PeriodicalId\":18113,\"journal\":{\"name\":\"Magazine of Concrete Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magazine of Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.22.00326\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.22.00326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了一种开发的承插式抗剪连接件(SSC)对复合地基墙弯曲性能的影响。通过改变SSC的布置方法和用量,制备了12个由H型钢梁或钢筋制成的灌注桩组成的复合地下室墙。对简单支撑的CBW试样施加两点荷载。试验结果表明,无论CIP的横截面细节如何,具有较高SSC量的CBW试样在弹性状态下具有较高的有效刚度,在极限状态下具有更高的弯矩承载力。当SSC使用加强钢板时,CBW试样的这些趋势尤其突出。CBW试样在具有负外部力矩的模拟载荷下的峰后行为尤其倾向于更具韧性。因此,在具有较高SSC量的复合墙体上充分施加了较高程度的复合作用。在0.5和0.75ηsc下,使用已建立的带SSC的CBW截面细节方程,承受正和负外部力矩的模拟载荷的CBW试样的标称部分复合与全复合弯曲承载力比(Mpc/Mfc)可分别计算为0.83和0.91,以及0.79和0.90,其中ηsc是AISC 360-16中规定的标准化抗剪连接件承载力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexural tests on composite basement walls with socket-type shear connectors
This study examined the effect of a developed socket-type shear connector (SSC) on the flexural behavior of a composite basement wall. Twelve composite basement walls (CBW) composed of cast-in-place piles (CIPs) produced with H-shaped steel beams or reinforcing steel bars were prepared by varying the arrangement method and amount of SSC. Two-point loading was applied to simply supported CBW specimens. The test results showed that the CBW specimens with higher amounts of SSC had a higher effective stiffness in the elastic state and moment capacity in the ultimate state, irrespective of the cross-sectional details of the CIP. These trends were particularly prominent for the CBW specimens when SSC used a reinforced steel plate. The post-peak behavior of CBW specimens subjected to a simulated load with a negative external moment, in particular, tended to be more ductile. Consequently, a higher degree of composite action was fully exerted on the composite walls with higher SSC amounts. The nominal partially composite-to-full composite flexural capacity ratios (Mpc/Mfc) of the CBW specimens subjected to the simulated loads with positive and negative external moments can be calculated as 0.83 and 0.91, and 0.79 and 0.90, respectively, at 0.5 and 0.75ηsc using established equations for the sectional details of CBWs with SSC, where ηsc is the normalized shear connector capacity specified in AISC 360-16.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
期刊最新文献
Characterisation proposal of direct shear strength of steel fibre-reinforced concrete Punching shear tests and design of UHTCC-enhanced RC slab-column joints with shear reinforcements Engineering and microstructural properties of self-compacting concrete containing coarse recycled concrete aggregate Modelling chloride diffusion in concrete with carbonated surface layer Shear friction capacity of monolithic construction joints reinforced with self-prestressing reinforcing steel bars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1