{"title":"利用CP/MAS 13C NMR和ESR光谱分析Livingston岛土壤中腐植酸的特性","authors":"E. Abakumov, R. Yaneva, V. Polyakov, M. Zhiyanski","doi":"10.1155/2022/7540077","DOIUrl":null,"url":null,"abstract":"The tundra and tundra barrens of the maritime Antarctica represent a unique type of terrestrial ecosystem, geographically confined to the region of the Antarctic Peninsula and a number of surrounding archipelagos. Antarctic soils are underestimated in the quantity of organic matter (OM) pools, organic remnant humification/mineralization rates, and biogenic-abiogenic interactions. The structure of reserves for humic substances within the permafrost zone, as well as the role of the molecular composition of organic substances, are still poorly understood. In this study, we investigate humic acids of selected sub-Antarctic soils in terms of elemental and structural composition to evaluate OM stabilization degree and to assess carbon distributions in the molecules by solid-state CP/MAS 13C NMR and ESR spectroscopy. The results obtained show that the studied humic acids consist mainly of aliphatic structural fragments. According to ESR spectroscopy, it was noted that the most stable molecules by the data of ESR spectroscopy are formed in postornithogenic soils. In contrast, the average portion of the aromatic compounds is about 30% in humic acids, extracted from soils with evident ornithogenic effect.","PeriodicalId":38438,"journal":{"name":"Applied and Environmental Soil Science","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of Humic Acids Isolated from Selected Soils of Livingston Island by CP/MAS 13C NMR and ESR Spectroscopy\",\"authors\":\"E. Abakumov, R. Yaneva, V. Polyakov, M. Zhiyanski\",\"doi\":\"10.1155/2022/7540077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tundra and tundra barrens of the maritime Antarctica represent a unique type of terrestrial ecosystem, geographically confined to the region of the Antarctic Peninsula and a number of surrounding archipelagos. Antarctic soils are underestimated in the quantity of organic matter (OM) pools, organic remnant humification/mineralization rates, and biogenic-abiogenic interactions. The structure of reserves for humic substances within the permafrost zone, as well as the role of the molecular composition of organic substances, are still poorly understood. In this study, we investigate humic acids of selected sub-Antarctic soils in terms of elemental and structural composition to evaluate OM stabilization degree and to assess carbon distributions in the molecules by solid-state CP/MAS 13C NMR and ESR spectroscopy. The results obtained show that the studied humic acids consist mainly of aliphatic structural fragments. According to ESR spectroscopy, it was noted that the most stable molecules by the data of ESR spectroscopy are formed in postornithogenic soils. In contrast, the average portion of the aromatic compounds is about 30% in humic acids, extracted from soils with evident ornithogenic effect.\",\"PeriodicalId\":38438,\"journal\":{\"name\":\"Applied and Environmental Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7540077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/7540077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Characterization of Humic Acids Isolated from Selected Soils of Livingston Island by CP/MAS 13C NMR and ESR Spectroscopy
The tundra and tundra barrens of the maritime Antarctica represent a unique type of terrestrial ecosystem, geographically confined to the region of the Antarctic Peninsula and a number of surrounding archipelagos. Antarctic soils are underestimated in the quantity of organic matter (OM) pools, organic remnant humification/mineralization rates, and biogenic-abiogenic interactions. The structure of reserves for humic substances within the permafrost zone, as well as the role of the molecular composition of organic substances, are still poorly understood. In this study, we investigate humic acids of selected sub-Antarctic soils in terms of elemental and structural composition to evaluate OM stabilization degree and to assess carbon distributions in the molecules by solid-state CP/MAS 13C NMR and ESR spectroscopy. The results obtained show that the studied humic acids consist mainly of aliphatic structural fragments. According to ESR spectroscopy, it was noted that the most stable molecules by the data of ESR spectroscopy are formed in postornithogenic soils. In contrast, the average portion of the aromatic compounds is about 30% in humic acids, extracted from soils with evident ornithogenic effect.
期刊介绍:
Applied and Environmental Soil Science is a peer-reviewed, Open Access journal that publishes research and review articles in the field of soil science. Its coverage reflects the multidisciplinary nature of soil science, and focuses on studies that take account of the dynamics and spatial heterogeneity of processes in soil. Basic studies of the physical, chemical, biochemical, and biological properties of soil, innovations in soil analysis, and the development of statistical tools will be published. Among the major environmental issues addressed will be: -Pollution by trace elements and nutrients in excess- Climate change and global warming- Soil stability and erosion- Water quality- Quality of agricultural crops- Plant nutrition- Soil hydrology- Biodiversity of soils- Role of micro- and mesofauna in soil