Sarita Bugalia, Jai Prakash Tripathi, Syed Abaas, Hao Wang
{"title":"扑杀在人与动物之间疾病双向传播中的意义的一般理论","authors":"Sarita Bugalia, Jai Prakash Tripathi, Syed Abaas, Hao Wang","doi":"10.1142/s0218339023500286","DOIUrl":null,"url":null,"abstract":"An epidemic model is proposed to comprehend the disease dynamics between humans and animals and back to humans with a culling intervention strategy. The proposed model is separated into two cases with two different culling rates: (1) at a per-capita constant rate and (2) constant population being culled. The global asymptotic stability of equilibria is determined in terms of the basic reproduction numbers. Further, we find that the culling rate (2) considered in the model could change the dynamics by having multiple positive equilibria. Sensitivity analysis recommends developing a strategy that promotes animals’ natural and disease-related death rates. By ranking the efficacies of various intervention strategies, we obtain that vaccination in the human population, isolation and public awareness are the largely effective control interventions. Our general theory raises concerns about both human and animal populations becoming reservoirs of the disease and affecting each other dynamically.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GENERAL THEORY FOR SIGNIFICANCE OF CULLING IN TWO-WAY DISEASE TRANSMISSION BETWEEN HUMANS AND ANIMALS\",\"authors\":\"Sarita Bugalia, Jai Prakash Tripathi, Syed Abaas, Hao Wang\",\"doi\":\"10.1142/s0218339023500286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An epidemic model is proposed to comprehend the disease dynamics between humans and animals and back to humans with a culling intervention strategy. The proposed model is separated into two cases with two different culling rates: (1) at a per-capita constant rate and (2) constant population being culled. The global asymptotic stability of equilibria is determined in terms of the basic reproduction numbers. Further, we find that the culling rate (2) considered in the model could change the dynamics by having multiple positive equilibria. Sensitivity analysis recommends developing a strategy that promotes animals’ natural and disease-related death rates. By ranking the efficacies of various intervention strategies, we obtain that vaccination in the human population, isolation and public awareness are the largely effective control interventions. Our general theory raises concerns about both human and animal populations becoming reservoirs of the disease and affecting each other dynamically.\",\"PeriodicalId\":54872,\"journal\":{\"name\":\"Journal of Biological Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339023500286\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500286","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
GENERAL THEORY FOR SIGNIFICANCE OF CULLING IN TWO-WAY DISEASE TRANSMISSION BETWEEN HUMANS AND ANIMALS
An epidemic model is proposed to comprehend the disease dynamics between humans and animals and back to humans with a culling intervention strategy. The proposed model is separated into two cases with two different culling rates: (1) at a per-capita constant rate and (2) constant population being culled. The global asymptotic stability of equilibria is determined in terms of the basic reproduction numbers. Further, we find that the culling rate (2) considered in the model could change the dynamics by having multiple positive equilibria. Sensitivity analysis recommends developing a strategy that promotes animals’ natural and disease-related death rates. By ranking the efficacies of various intervention strategies, we obtain that vaccination in the human population, isolation and public awareness are the largely effective control interventions. Our general theory raises concerns about both human and animal populations becoming reservoirs of the disease and affecting each other dynamically.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.