{"title":"氧化铜纳米粒子对植物生长的影响:综述","authors":"G. Feigl","doi":"10.1080/17429145.2023.2243098","DOIUrl":null,"url":null,"abstract":"ABSTRACT Copper oxide nanoparticles (CuO NPs) are a type of nanomaterial with unique physical and chemical properties that make them useful in various applications. CuO NPs have been studied for their potential agricultural applications, where they can have both positive and negative effects on plants, depending on factors such as concentration and duration of exposure. CuO NPs have been shown to improve plant growth and development by enhancing photosynthesis, nutrient uptake, and root growth. However, high concentrations of CuO NPs can cause oxidative stress and damage to plant cells, resulting in reduced growth and yield. Furthermore, these NPs can be taken up by plants and accumulate in various plant tissues, raising concerns about their potential impact on human health if ingested via the food chain. Further research is needed to determine the safe and effective application method and optimal concentration of CuO NPs in agriculture. Highlights CuO NPs can benefit or harm plants, based on concentration and exposure time. Monocots are more negatively affected by CuO NPs, dicots show diverse response. CuO NPs impact plants based on species, concentration, and application. More research needed to understand CuO NPs’ impact on plant growth and health. GRAPHICAL ABSTRACT","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The impact of copper oxide nanoparticles on plant growth: a comprehensive review\",\"authors\":\"G. Feigl\",\"doi\":\"10.1080/17429145.2023.2243098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Copper oxide nanoparticles (CuO NPs) are a type of nanomaterial with unique physical and chemical properties that make them useful in various applications. CuO NPs have been studied for their potential agricultural applications, where they can have both positive and negative effects on plants, depending on factors such as concentration and duration of exposure. CuO NPs have been shown to improve plant growth and development by enhancing photosynthesis, nutrient uptake, and root growth. However, high concentrations of CuO NPs can cause oxidative stress and damage to plant cells, resulting in reduced growth and yield. Furthermore, these NPs can be taken up by plants and accumulate in various plant tissues, raising concerns about their potential impact on human health if ingested via the food chain. Further research is needed to determine the safe and effective application method and optimal concentration of CuO NPs in agriculture. Highlights CuO NPs can benefit or harm plants, based on concentration and exposure time. Monocots are more negatively affected by CuO NPs, dicots show diverse response. CuO NPs impact plants based on species, concentration, and application. More research needed to understand CuO NPs’ impact on plant growth and health. GRAPHICAL ABSTRACT\",\"PeriodicalId\":16830,\"journal\":{\"name\":\"Journal of Plant Interactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17429145.2023.2243098\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2023.2243098","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The impact of copper oxide nanoparticles on plant growth: a comprehensive review
ABSTRACT Copper oxide nanoparticles (CuO NPs) are a type of nanomaterial with unique physical and chemical properties that make them useful in various applications. CuO NPs have been studied for their potential agricultural applications, where they can have both positive and negative effects on plants, depending on factors such as concentration and duration of exposure. CuO NPs have been shown to improve plant growth and development by enhancing photosynthesis, nutrient uptake, and root growth. However, high concentrations of CuO NPs can cause oxidative stress and damage to plant cells, resulting in reduced growth and yield. Furthermore, these NPs can be taken up by plants and accumulate in various plant tissues, raising concerns about their potential impact on human health if ingested via the food chain. Further research is needed to determine the safe and effective application method and optimal concentration of CuO NPs in agriculture. Highlights CuO NPs can benefit or harm plants, based on concentration and exposure time. Monocots are more negatively affected by CuO NPs, dicots show diverse response. CuO NPs impact plants based on species, concentration, and application. More research needed to understand CuO NPs’ impact on plant growth and health. GRAPHICAL ABSTRACT
期刊介绍:
Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.