{"title":"Sm2O3和CaF2浓度对硼硅酸盐玻璃发光增强和显红光的影响","authors":"Yingjie Qiao","doi":"10.1080/0371750X.2021.1978866","DOIUrl":null,"url":null,"abstract":"A series of Samarium (Sm) doped borosilicate glass was designed and prepared by melt-quenching method to realize the controllable and adjustable red emission for further applications of rare-earth doped glass. The influence of Sm 2O3 and CaF2 concentration on the structure, composition and luminescence property of samples were investigated and revealed. It was shown that the samples had glassy non-crystalline nature and high transparency within the visible light region. The characteristic transitions of Sm3+ ion assigned to 4G5/2 → 6H J /2 (J = 5, 7, 9, 11) were detected, which realized the red-orange emission in the host. Concentration quenching occurred when Sm2O3 and CaF 2 contents were 1.0 and 8 mol%, respectively. Dipole-dipole interactions were the effective mechanisms of energy transfer and quenching between Sm 3+ ions. M eanwhile, with fixed Sm 2O3 concentration, both the PL intensity and the fluorescence lifetime increased as the CaF2 content enhanced. In a word, the orange/red ( O/R) ratio, Commission Internationale de ĺEclairage (CIE) chromatic coordinates and luminescence colour of the samples are dependent and adjustable by the concentration of Sm2O3 and CaF2, which helps to fabricate tunable efficiency light-emitting materials and extend their applications by regulating the composition of glass. GRAPHICAL ABSTRACT","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influenceof Sm2O3 and CaF2 Concentrationonthe Enhancement of Luminescence and Red Colour in Borosilicate Glass\",\"authors\":\"Yingjie Qiao\",\"doi\":\"10.1080/0371750X.2021.1978866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of Samarium (Sm) doped borosilicate glass was designed and prepared by melt-quenching method to realize the controllable and adjustable red emission for further applications of rare-earth doped glass. The influence of Sm 2O3 and CaF2 concentration on the structure, composition and luminescence property of samples were investigated and revealed. It was shown that the samples had glassy non-crystalline nature and high transparency within the visible light region. The characteristic transitions of Sm3+ ion assigned to 4G5/2 → 6H J /2 (J = 5, 7, 9, 11) were detected, which realized the red-orange emission in the host. Concentration quenching occurred when Sm2O3 and CaF 2 contents were 1.0 and 8 mol%, respectively. Dipole-dipole interactions were the effective mechanisms of energy transfer and quenching between Sm 3+ ions. M eanwhile, with fixed Sm 2O3 concentration, both the PL intensity and the fluorescence lifetime increased as the CaF2 content enhanced. In a word, the orange/red ( O/R) ratio, Commission Internationale de ĺEclairage (CIE) chromatic coordinates and luminescence colour of the samples are dependent and adjustable by the concentration of Sm2O3 and CaF2, which helps to fabricate tunable efficiency light-emitting materials and extend their applications by regulating the composition of glass. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23233,\"journal\":{\"name\":\"Transactions of the Indian Ceramic Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Indian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/0371750X.2021.1978866\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/0371750X.2021.1978866","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Influenceof Sm2O3 and CaF2 Concentrationonthe Enhancement of Luminescence and Red Colour in Borosilicate Glass
A series of Samarium (Sm) doped borosilicate glass was designed and prepared by melt-quenching method to realize the controllable and adjustable red emission for further applications of rare-earth doped glass. The influence of Sm 2O3 and CaF2 concentration on the structure, composition and luminescence property of samples were investigated and revealed. It was shown that the samples had glassy non-crystalline nature and high transparency within the visible light region. The characteristic transitions of Sm3+ ion assigned to 4G5/2 → 6H J /2 (J = 5, 7, 9, 11) were detected, which realized the red-orange emission in the host. Concentration quenching occurred when Sm2O3 and CaF 2 contents were 1.0 and 8 mol%, respectively. Dipole-dipole interactions were the effective mechanisms of energy transfer and quenching between Sm 3+ ions. M eanwhile, with fixed Sm 2O3 concentration, both the PL intensity and the fluorescence lifetime increased as the CaF2 content enhanced. In a word, the orange/red ( O/R) ratio, Commission Internationale de ĺEclairage (CIE) chromatic coordinates and luminescence colour of the samples are dependent and adjustable by the concentration of Sm2O3 and CaF2, which helps to fabricate tunable efficiency light-emitting materials and extend their applications by regulating the composition of glass. GRAPHICAL ABSTRACT
期刊介绍:
Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family.
The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.