{"title":"压力管式重水堆堆芯的建模研究和代码间比较","authors":"Huiping Yan, B. Bromley, C. Dugal, A. V. Colton","doi":"10.12943/CNR.2018.00003","DOIUrl":null,"url":null,"abstract":"Preliminary, conceptual studies have been performed previously using deterministic lattice physics (WIMS-AECL) and core physics codes (RFSP) to estimate performance and safety characteristics of various thorium-based fuels and uranium-based fuels augmented by small amounts of thorium for use in pressure tube heavy-water reactors (PT-HWRs). To confirm the validity of the results, the WIMS-AECL/RFSP results are compared against predictions made with the stochastic neutron transport code MCNP. This paper describes the development of a method for setting up an MCNP core model of at PT-HWR for comparison with WIMS-AECL/RFSP results, using a core with 37-element natural uranium fuel bundles as a test case for sensitivity studies. These studies included evaluating the sensitivity of the bias of the effective neutron multiplication factor (keff), a source convergence study, uncertainties correction with multiple independent simulations, the impact of irradiation map binning methods, and the impact of reflector models. A Python-based software scripting tool was developed to automate the creation, execution, and post-processing of reactor physics data from the MCNP models. The software tool and algorithm for creating an MCNP core model using data from the WIMS-AECL and RFSP models are described in this paper. Based on the preliminary evaluations of the simulation parameters with the base model, reactor physics analyses were performed for PT-HWR cores with thorium-based fuels in a 35-element bundle type. Code-to-code results demonstrate good agreement between MCNP and RFSP, giving confidence in the method developed and its applicability to other fuels and core types.","PeriodicalId":42750,"journal":{"name":"CNL Nuclear Review","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELING STUDIES AND CODE-TO-CODE COMPARISONS FOR PRESSURE TUBE HEAVY WATER REACTOR CORES\",\"authors\":\"Huiping Yan, B. Bromley, C. Dugal, A. V. Colton\",\"doi\":\"10.12943/CNR.2018.00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preliminary, conceptual studies have been performed previously using deterministic lattice physics (WIMS-AECL) and core physics codes (RFSP) to estimate performance and safety characteristics of various thorium-based fuels and uranium-based fuels augmented by small amounts of thorium for use in pressure tube heavy-water reactors (PT-HWRs). To confirm the validity of the results, the WIMS-AECL/RFSP results are compared against predictions made with the stochastic neutron transport code MCNP. This paper describes the development of a method for setting up an MCNP core model of at PT-HWR for comparison with WIMS-AECL/RFSP results, using a core with 37-element natural uranium fuel bundles as a test case for sensitivity studies. These studies included evaluating the sensitivity of the bias of the effective neutron multiplication factor (keff), a source convergence study, uncertainties correction with multiple independent simulations, the impact of irradiation map binning methods, and the impact of reflector models. A Python-based software scripting tool was developed to automate the creation, execution, and post-processing of reactor physics data from the MCNP models. The software tool and algorithm for creating an MCNP core model using data from the WIMS-AECL and RFSP models are described in this paper. Based on the preliminary evaluations of the simulation parameters with the base model, reactor physics analyses were performed for PT-HWR cores with thorium-based fuels in a 35-element bundle type. Code-to-code results demonstrate good agreement between MCNP and RFSP, giving confidence in the method developed and its applicability to other fuels and core types.\",\"PeriodicalId\":42750,\"journal\":{\"name\":\"CNL Nuclear Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNL Nuclear Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12943/CNR.2018.00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNL Nuclear Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12943/CNR.2018.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MODELING STUDIES AND CODE-TO-CODE COMPARISONS FOR PRESSURE TUBE HEAVY WATER REACTOR CORES
Preliminary, conceptual studies have been performed previously using deterministic lattice physics (WIMS-AECL) and core physics codes (RFSP) to estimate performance and safety characteristics of various thorium-based fuels and uranium-based fuels augmented by small amounts of thorium for use in pressure tube heavy-water reactors (PT-HWRs). To confirm the validity of the results, the WIMS-AECL/RFSP results are compared against predictions made with the stochastic neutron transport code MCNP. This paper describes the development of a method for setting up an MCNP core model of at PT-HWR for comparison with WIMS-AECL/RFSP results, using a core with 37-element natural uranium fuel bundles as a test case for sensitivity studies. These studies included evaluating the sensitivity of the bias of the effective neutron multiplication factor (keff), a source convergence study, uncertainties correction with multiple independent simulations, the impact of irradiation map binning methods, and the impact of reflector models. A Python-based software scripting tool was developed to automate the creation, execution, and post-processing of reactor physics data from the MCNP models. The software tool and algorithm for creating an MCNP core model using data from the WIMS-AECL and RFSP models are described in this paper. Based on the preliminary evaluations of the simulation parameters with the base model, reactor physics analyses were performed for PT-HWR cores with thorium-based fuels in a 35-element bundle type. Code-to-code results demonstrate good agreement between MCNP and RFSP, giving confidence in the method developed and its applicability to other fuels and core types.