Zhenkun Jin , Yixuan Geng , Chenlu Zhu , Yunzhi Xia , Xianjun Deng , Lingzhi Yi , Xianlan Wang
{"title":"能量采集无线传感器网络中目标永久覆盖的部署优化","authors":"Zhenkun Jin , Yixuan Geng , Chenlu Zhu , Yunzhi Xia , Xianjun Deng , Lingzhi Yi , Xianlan Wang","doi":"10.1016/j.dcan.2023.02.009","DOIUrl":null,"url":null,"abstract":"<div><p>Energy limitation of traditional Wireless Sensor Networks (WSNs) greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery. The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN. However, existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space. Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN, we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage. The Confident Information Coverage (CIC) model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage (CICMTP) problem to minimize the deployed sensor nodes. As the CICMTP is NP-hard, we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC (LGTA-CIC) and Overall Greedy Search Algorithm based on CIC (OGSA-CIC). The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate. Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP, TPNP and EENP algorithms.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864823000445/pdfft?md5=77d790869eceee0f4258a4afc2cddfc5&pid=1-s2.0-S2352864823000445-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network\",\"authors\":\"Zhenkun Jin , Yixuan Geng , Chenlu Zhu , Yunzhi Xia , Xianjun Deng , Lingzhi Yi , Xianlan Wang\",\"doi\":\"10.1016/j.dcan.2023.02.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy limitation of traditional Wireless Sensor Networks (WSNs) greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery. The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN. However, existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space. Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN, we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage. The Confident Information Coverage (CIC) model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage (CICMTP) problem to minimize the deployed sensor nodes. As the CICMTP is NP-hard, we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC (LGTA-CIC) and Overall Greedy Search Algorithm based on CIC (OGSA-CIC). The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate. Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP, TPNP and EENP algorithms.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000445/pdfft?md5=77d790869eceee0f4258a4afc2cddfc5&pid=1-s2.0-S2352864823000445-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000445\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000445","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network
Energy limitation of traditional Wireless Sensor Networks (WSNs) greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery. The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN. However, existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space. Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN, we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage. The Confident Information Coverage (CIC) model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage (CICMTP) problem to minimize the deployed sensor nodes. As the CICMTP is NP-hard, we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC (LGTA-CIC) and Overall Greedy Search Algorithm based on CIC (OGSA-CIC). The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate. Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP, TPNP and EENP algorithms.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.