微生理系统研究微环境-细胞核相互作用:组织几何和异质性的重要性

S. Lelièvre, Shirisha Chittiboyina
{"title":"微生理系统研究微环境-细胞核相互作用:组织几何和异质性的重要性","authors":"S. Lelièvre, Shirisha Chittiboyina","doi":"10.21037/mps.2018.11.02","DOIUrl":null,"url":null,"abstract":"Theart of three-dimensional (3D) cell culture is to place cells in an environmentthat facilitates their differentiation into physiologically relevant tissues.The mammary gland was the original model for the development of 3D cellculture. With simple microphysiological systems for this model relying on thepresence of extracellular matrix (ECM) components, we initially showed thatnormal differentiation, illustrated by the formation of a basoapical polarityaxis and cell quiescence, relied on a specific organization of the cellnucleus, including the epigenome, itself under the control of the ECMmicroenvironment. To further explore microenvironment-nucleus interaction, werecently developed two organ-on-a-chip systems. The disease-on-a-chip was used tostudy mechanical influence by creating a model of ductal environment made ofcarved hemichannels. It revealed that the curvature of hemichannels directsnuclear morphometry to such an extent that tumors growing inside this geometry(as they do in vivo ) display distinct sensitivity to anticancer drugs.These findings shed light on previous observation that the expression ofproteins involved in anticancer drug response correlate with nuclearmorphometry and highlight the importance of choosing the appropriate 3D cellculture system for in vitro preclinical screening of drugs. Thegradient-on-a-chip was used to create, via microfluidics, a range ofextracellular concentrations of soluble components within the same culturechamber. With this system, it became apparent that oxidizing molecules presentin the ECM of cancers and suspected to contribute to progression and resistanceto treatment, have an influence on nuclear morphometric features recognized asa sign of aggressiveness; however, oxidizer concentration-mediated phenotypicswitch depends on ECM stiffness. These findings suggest that tissueheterogeneity characterizing cancers is directed by competitive and synergisticinfluences among extracellular factors controlling cell phenotype via an impacton the cell nucleus.","PeriodicalId":87327,"journal":{"name":"Microphysiological systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Microphysiological systems to study microenvironment-cell nucleus interaction: importance of tissue geometry and heterogeneity\",\"authors\":\"S. Lelièvre, Shirisha Chittiboyina\",\"doi\":\"10.21037/mps.2018.11.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theart of three-dimensional (3D) cell culture is to place cells in an environmentthat facilitates their differentiation into physiologically relevant tissues.The mammary gland was the original model for the development of 3D cellculture. With simple microphysiological systems for this model relying on thepresence of extracellular matrix (ECM) components, we initially showed thatnormal differentiation, illustrated by the formation of a basoapical polarityaxis and cell quiescence, relied on a specific organization of the cellnucleus, including the epigenome, itself under the control of the ECMmicroenvironment. To further explore microenvironment-nucleus interaction, werecently developed two organ-on-a-chip systems. The disease-on-a-chip was used tostudy mechanical influence by creating a model of ductal environment made ofcarved hemichannels. It revealed that the curvature of hemichannels directsnuclear morphometry to such an extent that tumors growing inside this geometry(as they do in vivo ) display distinct sensitivity to anticancer drugs.These findings shed light on previous observation that the expression ofproteins involved in anticancer drug response correlate with nuclearmorphometry and highlight the importance of choosing the appropriate 3D cellculture system for in vitro preclinical screening of drugs. Thegradient-on-a-chip was used to create, via microfluidics, a range ofextracellular concentrations of soluble components within the same culturechamber. With this system, it became apparent that oxidizing molecules presentin the ECM of cancers and suspected to contribute to progression and resistanceto treatment, have an influence on nuclear morphometric features recognized asa sign of aggressiveness; however, oxidizer concentration-mediated phenotypicswitch depends on ECM stiffness. These findings suggest that tissueheterogeneity characterizing cancers is directed by competitive and synergisticinfluences among extracellular factors controlling cell phenotype via an impacton the cell nucleus.\",\"PeriodicalId\":87327,\"journal\":{\"name\":\"Microphysiological systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microphysiological systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/mps.2018.11.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microphysiological systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/mps.2018.11.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

三维(3D)细胞培养的目的是将细胞放置在一个有助于其分化为生理相关组织的环境中。乳腺是3D细胞培养发展的原始模型。该模型的简单微观物理系统依赖于细胞外基质(ECM)成分的存在,我们最初表明,正常分化,如根尖极性轴的形成和细胞静止,依赖于细胞核的特定组织,包括表观基因组,其本身在ECM微环境的控制下。为了进一步探索微环境与细胞核的相互作用,我们集中开发了两个芯片上的器官系统。芯片上的疾病通过创建一个由服务的半通道组成的导管环境模型来研究机械影响。研究表明,半通道的弯曲直接影响了形态计量学,以至于生长在这种几何形状内的肿瘤(就像在体内一样)对抗癌药物表现出明显的敏感性。这些发现阐明了先前的观察结果,即参与抗癌药物反应的蛋白质的表达与核酸形态测定法相关,并强调了选择合适的3D细胞培养系统进行药物体外临床前筛选的重要性。芯片梯度用于通过微流体在同一培养箱内产生一系列可溶性成分的细胞外浓度。有了这个系统,很明显,癌症ECM中存在的氧化分子,被怀疑有助于进展和对治疗的抵抗,对被认为是侵袭性标志的核形态计量特征有影响;然而,氧化剂浓度介导的表型转换取决于ECM的硬度。这些发现表明,表征癌症的组织异质性是由通过影响细胞核来控制细胞表型的细胞外因子之间的竞争和协同作用所引导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microphysiological systems to study microenvironment-cell nucleus interaction: importance of tissue geometry and heterogeneity
Theart of three-dimensional (3D) cell culture is to place cells in an environmentthat facilitates their differentiation into physiologically relevant tissues.The mammary gland was the original model for the development of 3D cellculture. With simple microphysiological systems for this model relying on thepresence of extracellular matrix (ECM) components, we initially showed thatnormal differentiation, illustrated by the formation of a basoapical polarityaxis and cell quiescence, relied on a specific organization of the cellnucleus, including the epigenome, itself under the control of the ECMmicroenvironment. To further explore microenvironment-nucleus interaction, werecently developed two organ-on-a-chip systems. The disease-on-a-chip was used tostudy mechanical influence by creating a model of ductal environment made ofcarved hemichannels. It revealed that the curvature of hemichannels directsnuclear morphometry to such an extent that tumors growing inside this geometry(as they do in vivo ) display distinct sensitivity to anticancer drugs.These findings shed light on previous observation that the expression ofproteins involved in anticancer drug response correlate with nuclearmorphometry and highlight the importance of choosing the appropriate 3D cellculture system for in vitro preclinical screening of drugs. Thegradient-on-a-chip was used to create, via microfluidics, a range ofextracellular concentrations of soluble components within the same culturechamber. With this system, it became apparent that oxidizing molecules presentin the ECM of cancers and suspected to contribute to progression and resistanceto treatment, have an influence on nuclear morphometric features recognized asa sign of aggressiveness; however, oxidizer concentration-mediated phenotypicswitch depends on ECM stiffness. These findings suggest that tissueheterogeneity characterizing cancers is directed by competitive and synergisticinfluences among extracellular factors controlling cell phenotype via an impacton the cell nucleus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to Body-in-a-Cube: a microphysiological system for multi-tissue co-culture with near-physiological amounts of blood surrogate SARS-CoV-2-related vascular injury: mechanisms, imaging and models. Recent advancements of human iPSC derived cardiomyocytes in drug screening and tissue regeneration Body-in-a-Cube: a microphysiological system for multi-tissue co-culture with near-physiological amounts of blood surrogate. Engineering bone marrow-on-a-chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1