太阳能辅助二次再热燃煤发电系统的能量与火用评价

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Journal of Renewable and Sustainable Energy Pub Date : 2023-07-01 DOI:10.1063/5.0160837
Junjie Wu, Jiaming Wu, Yu-Ry Han
{"title":"太阳能辅助二次再热燃煤发电系统的能量与火用评价","authors":"Junjie Wu, Jiaming Wu, Yu-Ry Han","doi":"10.1063/5.0160837","DOIUrl":null,"url":null,"abstract":"In this paper, solar heat with mid- and high-temperature collected by molten salt parabolic trough solar field was integrated into the boiler sub-system of the double reheat coal-fired power generation system. Three typical integration modes were, respectively, evaluated by energy and exergy perspectives in terms of solar-generated electricity and solar energy conversion efficiency. Integration modes I–III utilized solar heat to preheat the inlet superheated steam, inlet reheated steam and inlet double reheated steam, respectively. Based on the case study through energy evaluation, it indicated that integrating solar energy with lower temperature led to higher solar-generated electricity, higher solar-to-solar heat efficiency, and higher solar-to-electricity efficiency. Integration mode I was unreasonably regarded superior to the other two, because the energy evaluation method ignored the quality of solar energy and mistakenly regarded the efficiency of solar heat to solar-generated electricity as the cycle efficiency. As an update, exergy evaluation takes both energy quantity and energy quality into consideration by regarding the efficiency of solar heat exergy to solar-generated electricity as the cycle exergy efficiency. It indicated that integration mode II was more recommended, with the highest solar-to-solar heat exergy efficiency and solar-to-electricity efficiency being 34.0% and 24.7%, respectively. The corresponding aperture area and solar-generated electricity are 5.7 × 105 m2 and 136.1 MW, respectively.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and exergy evaluations of solar-aided double reheat coal-fired power generation system\",\"authors\":\"Junjie Wu, Jiaming Wu, Yu-Ry Han\",\"doi\":\"10.1063/5.0160837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, solar heat with mid- and high-temperature collected by molten salt parabolic trough solar field was integrated into the boiler sub-system of the double reheat coal-fired power generation system. Three typical integration modes were, respectively, evaluated by energy and exergy perspectives in terms of solar-generated electricity and solar energy conversion efficiency. Integration modes I–III utilized solar heat to preheat the inlet superheated steam, inlet reheated steam and inlet double reheated steam, respectively. Based on the case study through energy evaluation, it indicated that integrating solar energy with lower temperature led to higher solar-generated electricity, higher solar-to-solar heat efficiency, and higher solar-to-electricity efficiency. Integration mode I was unreasonably regarded superior to the other two, because the energy evaluation method ignored the quality of solar energy and mistakenly regarded the efficiency of solar heat to solar-generated electricity as the cycle efficiency. As an update, exergy evaluation takes both energy quantity and energy quality into consideration by regarding the efficiency of solar heat exergy to solar-generated electricity as the cycle exergy efficiency. It indicated that integration mode II was more recommended, with the highest solar-to-solar heat exergy efficiency and solar-to-electricity efficiency being 34.0% and 24.7%, respectively. The corresponding aperture area and solar-generated electricity are 5.7 × 105 m2 and 136.1 MW, respectively.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0160837\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0160837","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文将熔盐抛物面槽太阳能场收集的中高温太阳能热集成到双热式燃煤发电系统的锅炉分系统中。分别从能源和火用角度对三种典型集成模式进行了太阳能发电和太阳能转换效率的评价。集成方式I-III分别利用太阳能预热进口过热蒸汽、进口再加热蒸汽和进口双再加热蒸汽。通过能量评价的案例研究表明,将太阳能与较低的温度相结合,可以获得更高的太阳能发电量、更高的太阳能-太阳能热效率和更高的太阳能-太阳能-电力效率。集成模式I被不合理地认为优于其他两种,因为能量评价方法忽略了太阳能的质量,错误地将太阳能热转化为太阳能发电的效率视为循环效率。作为一种更新,用能评价既考虑了能量的数量,也考虑了能量的质量,将太阳能热用能对太阳能发电的效率作为循环用能效率。结果表明,集成模式II更值得推荐,其太阳能-太阳能热用能效率和太阳能-电力效率最高,分别为34.0%和24.7%。孔径面积为5.7 × 105 m2,太阳能发电量为136.1 MW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy and exergy evaluations of solar-aided double reheat coal-fired power generation system
In this paper, solar heat with mid- and high-temperature collected by molten salt parabolic trough solar field was integrated into the boiler sub-system of the double reheat coal-fired power generation system. Three typical integration modes were, respectively, evaluated by energy and exergy perspectives in terms of solar-generated electricity and solar energy conversion efficiency. Integration modes I–III utilized solar heat to preheat the inlet superheated steam, inlet reheated steam and inlet double reheated steam, respectively. Based on the case study through energy evaluation, it indicated that integrating solar energy with lower temperature led to higher solar-generated electricity, higher solar-to-solar heat efficiency, and higher solar-to-electricity efficiency. Integration mode I was unreasonably regarded superior to the other two, because the energy evaluation method ignored the quality of solar energy and mistakenly regarded the efficiency of solar heat to solar-generated electricity as the cycle efficiency. As an update, exergy evaluation takes both energy quantity and energy quality into consideration by regarding the efficiency of solar heat exergy to solar-generated electricity as the cycle exergy efficiency. It indicated that integration mode II was more recommended, with the highest solar-to-solar heat exergy efficiency and solar-to-electricity efficiency being 34.0% and 24.7%, respectively. The corresponding aperture area and solar-generated electricity are 5.7 × 105 m2 and 136.1 MW, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
期刊最新文献
High areal-capacitance based extremely stable flexible supercapacitors using binder-free exfoliated graphite paper electrode Case study of a bore wind-ramp event from lidar measurements and HRRR simulations over ARM Southern Great Plains Barriers and variable spacing enhance convective cooling and increase power output in solar PV plants Two three-dimensional super-Gaussian wake models for hilly terrain Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1