{"title":"广义洛伦兹空间与经典洛伦兹空间之间极大函数的范数","authors":"R. Mustafayev, Nevin Bilgiccli, M. Yılmaz","doi":"10.59849/2218-6816.2023.2.51","DOIUrl":null,"url":null,"abstract":"In this paper we calculate the norm of the generalized maximal operator $M_{\\phi,\\Lambda^{\\alpha}(b)}$, defined with $0<\\alpha<\\infty$ and functions $b,\\,\\phi: (0,\\infty) \\rightarrow (0,\\infty)$ for all measurable functions $f$ on ${\\mathbb R}^n$ by \\begin{equation*} M_{\\phi,\\Lambda^{\\alpha}(b)}f(x) : = \\sup_{Q \\ni x} \\frac{\\|f \\chi_Q\\|_{\\Lambda^{\\alpha}(b)}}{\\phi (|Q|)}, \\qquad x \\in {\\mathbb R}^n, \\end{equation*} from ${\\operatorname{G\\Gamma}}(p,m,v)$ into $\\Lambda^q(w)$. Here $\\Lambda^{\\alpha}(b)$ and ${\\operatorname{G\\Gamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${\\mathbb R}^n$ for which $$ \\|f\\|_{\\Lambda^{\\alpha}(b)} = \\bigg( \\int_0^{\\infty} [f^*(s)]^{\\alpha} b(s)\\,ds \\bigg)^{\\frac{1}{\\alpha}}<\\infty \\quad \\mbox{and} \\quad \\|f\\|_{{\\operatorname{G\\Gamma}}(p,m,w)} = \\bigg( \\int_0^{\\infty} \\bigg( \\int_0^x [f^* (\\tau)]^p\\,d\\tau \\bigg)^{\\frac{m}{p}} v(x)\\,dx \\bigg)^{\\frac{1}{m}}<\\infty, $$ respectively. We reduce the problem to the solution of the inequality \\begin{equation*} \\bigg( \\int_0^{\\infty} \\big[ T_{u,b}f^* (x)\\big]^q \\, w(x)\\,dx\\bigg)^{\\frac{1}{q}} \\le C \\, \\bigg( \\int_0^{\\infty} \\bigg( \\int_0^x [f^* (\\tau)]^p\\,d\\tau \\bigg)^{\\frac{m}{p}} v(x)\\,dx \\bigg)^{\\frac{1}{m}} \\end{equation*} where $w$ and $v$ are weight functions on $(0,\\infty)$. Here $f^*$ is the non-increasing rearrangement of $f$ defined on ${\\mathbb R}^n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,\\infty)$ by $$ (T_{u,b} g)(t) : = \\sup_{\\tau \\in [t,\\infty)} \\frac{u(\\tau)}{B(\\tau)} \\int_0^{\\tau} g(s)b(s)\\,ds,\\qquad t \\in (0,\\infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,\\infty)$ and the function $B(t) : = \\int_0^t b(s)\\,ds$ satisfies $0","PeriodicalId":54116,"journal":{"name":"Azerbaijan Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Norms of Maximal Functions between Generalized and Classical Lorentz Spaces\",\"authors\":\"R. Mustafayev, Nevin Bilgiccli, M. Yılmaz\",\"doi\":\"10.59849/2218-6816.2023.2.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we calculate the norm of the generalized maximal operator $M_{\\\\phi,\\\\Lambda^{\\\\alpha}(b)}$, defined with $0<\\\\alpha<\\\\infty$ and functions $b,\\\\,\\\\phi: (0,\\\\infty) \\\\rightarrow (0,\\\\infty)$ for all measurable functions $f$ on ${\\\\mathbb R}^n$ by \\\\begin{equation*} M_{\\\\phi,\\\\Lambda^{\\\\alpha}(b)}f(x) : = \\\\sup_{Q \\\\ni x} \\\\frac{\\\\|f \\\\chi_Q\\\\|_{\\\\Lambda^{\\\\alpha}(b)}}{\\\\phi (|Q|)}, \\\\qquad x \\\\in {\\\\mathbb R}^n, \\\\end{equation*} from ${\\\\operatorname{G\\\\Gamma}}(p,m,v)$ into $\\\\Lambda^q(w)$. Here $\\\\Lambda^{\\\\alpha}(b)$ and ${\\\\operatorname{G\\\\Gamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${\\\\mathbb R}^n$ for which $$ \\\\|f\\\\|_{\\\\Lambda^{\\\\alpha}(b)} = \\\\bigg( \\\\int_0^{\\\\infty} [f^*(s)]^{\\\\alpha} b(s)\\\\,ds \\\\bigg)^{\\\\frac{1}{\\\\alpha}}<\\\\infty \\\\quad \\\\mbox{and} \\\\quad \\\\|f\\\\|_{{\\\\operatorname{G\\\\Gamma}}(p,m,w)} = \\\\bigg( \\\\int_0^{\\\\infty} \\\\bigg( \\\\int_0^x [f^* (\\\\tau)]^p\\\\,d\\\\tau \\\\bigg)^{\\\\frac{m}{p}} v(x)\\\\,dx \\\\bigg)^{\\\\frac{1}{m}}<\\\\infty, $$ respectively. We reduce the problem to the solution of the inequality \\\\begin{equation*} \\\\bigg( \\\\int_0^{\\\\infty} \\\\big[ T_{u,b}f^* (x)\\\\big]^q \\\\, w(x)\\\\,dx\\\\bigg)^{\\\\frac{1}{q}} \\\\le C \\\\, \\\\bigg( \\\\int_0^{\\\\infty} \\\\bigg( \\\\int_0^x [f^* (\\\\tau)]^p\\\\,d\\\\tau \\\\bigg)^{\\\\frac{m}{p}} v(x)\\\\,dx \\\\bigg)^{\\\\frac{1}{m}} \\\\end{equation*} where $w$ and $v$ are weight functions on $(0,\\\\infty)$. Here $f^*$ is the non-increasing rearrangement of $f$ defined on ${\\\\mathbb R}^n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,\\\\infty)$ by $$ (T_{u,b} g)(t) : = \\\\sup_{\\\\tau \\\\in [t,\\\\infty)} \\\\frac{u(\\\\tau)}{B(\\\\tau)} \\\\int_0^{\\\\tau} g(s)b(s)\\\\,ds,\\\\qquad t \\\\in (0,\\\\infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,\\\\infty)$ and the function $B(t) : = \\\\int_0^t b(s)\\\\,ds$ satisfies $0\",\"PeriodicalId\":54116,\"journal\":{\"name\":\"Azerbaijan Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Azerbaijan Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59849/2218-6816.2023.2.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59849/2218-6816.2023.2.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
本文计算了广义极大算子$M_{\phi,\Lambda^{\alpha}(b)}$的范数,定义为$0<\alpha<\infty$和函数$b,\,\phi: (0,\infty) \right row (0,\infty)$对于${\mathbb R}^n$上的所有可测函数$f$的范数:\begin{equation*} M_{\phi,\Lambda^{\alpha}(b)}f(x) = \sup_{Q \ni x} \frac{\|} \chi_Q\| {\Lambda^{\alpha}(b)}}{\phi (|Q|)}, \qquad x \ In {\mathbb R}} n, \end{equation*}从${\operatorname{G\Gamma}}(p,m,v)$到$\Lambda^ Q (w)$。这里$\Lambda^{\alpha}(b)$和${\operatorname{G\Gamma}}(p,m,w)$是经典的和广义的洛伦兹空间,定义为一组所有可测函数f定义在美元$ {\ mathbb R} ^ n的美元$ $ f \ \ | | _{\λ^{\α}(b)} = \境(\ int_0 ^ {\ infty} (f ^ * (s)) ^{\α}b (s) \, ds \境)^{\压裂{1}{\α}}< \ infty \四\ mbox{和}\四\ | f \ | _ {{\ operatorname {G \伽马}}(p m w)} = \境(\ int_0 ^ {\ infty} \境(\ int_0 x ^ ^ [f ^ *(\τ)]p \ d \τ\境)^{\压裂{m} {p}} v (x) \, dx \境)^{\压裂{1}{m}} < \ infty分别$ $。我们减少了问题的解决不平等\开始{方程*}\境(\ int_0 ^ {\ infty} \大(T_ {u, b}识别f ^ * (x) \] ^问\ w (x) \, dx \境)^{\压裂{1}{q}} \ le C \ \境(\ int_0 ^ {\ infty} \境(\ int_0 ^ x [f ^ *(\τ)]^ p \ d \τ\境)^{\压裂{m} {p}} v (x) \, dx \境)^{\压裂{1}{m}} \{方程*}结束w美元和v美元权重函数在(0,\ infty)美元。这里$f^*$是定义在${\mathbb R}^n$上的$f$的非递增重排,$T_{u,b}$是迭代hardy型算子,它是定义在$(0,\infty)$上的可测非负函数$f$,由$$ (T_{u,b} g)(t): = \sup_{\tau \in [t,\infty)} \frac{u(\tau)}{b(\tau)}{b(\tau)}}{int_0^{\tau} g(s)b(s)\,ds,\qquad t \in (0,\infty), $$其中$u$和$b$是$(0,\infty)$上的适当权函数,函数$b (t): = \int_0^t b(s)\,ds$满足$0
Norms of Maximal Functions between Generalized and Classical Lorentz Spaces
In this paper we calculate the norm of the generalized maximal operator $M_{\phi,\Lambda^{\alpha}(b)}$, defined with $0<\alpha<\infty$ and functions $b,\,\phi: (0,\infty) \rightarrow (0,\infty)$ for all measurable functions $f$ on ${\mathbb R}^n$ by \begin{equation*} M_{\phi,\Lambda^{\alpha}(b)}f(x) : = \sup_{Q \ni x} \frac{\|f \chi_Q\|_{\Lambda^{\alpha}(b)}}{\phi (|Q|)}, \qquad x \in {\mathbb R}^n, \end{equation*} from ${\operatorname{G\Gamma}}(p,m,v)$ into $\Lambda^q(w)$. Here $\Lambda^{\alpha}(b)$ and ${\operatorname{G\Gamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${\mathbb R}^n$ for which $$ \|f\|_{\Lambda^{\alpha}(b)} = \bigg( \int_0^{\infty} [f^*(s)]^{\alpha} b(s)\,ds \bigg)^{\frac{1}{\alpha}}<\infty \quad \mbox{and} \quad \|f\|_{{\operatorname{G\Gamma}}(p,m,w)} = \bigg( \int_0^{\infty} \bigg( \int_0^x [f^* (\tau)]^p\,d\tau \bigg)^{\frac{m}{p}} v(x)\,dx \bigg)^{\frac{1}{m}}<\infty, $$ respectively. We reduce the problem to the solution of the inequality \begin{equation*} \bigg( \int_0^{\infty} \big[ T_{u,b}f^* (x)\big]^q \, w(x)\,dx\bigg)^{\frac{1}{q}} \le C \, \bigg( \int_0^{\infty} \bigg( \int_0^x [f^* (\tau)]^p\,d\tau \bigg)^{\frac{m}{p}} v(x)\,dx \bigg)^{\frac{1}{m}} \end{equation*} where $w$ and $v$ are weight functions on $(0,\infty)$. Here $f^*$ is the non-increasing rearrangement of $f$ defined on ${\mathbb R}^n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,\infty)$ by $$ (T_{u,b} g)(t) : = \sup_{\tau \in [t,\infty)} \frac{u(\tau)}{B(\tau)} \int_0^{\tau} g(s)b(s)\,ds,\qquad t \in (0,\infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,\infty)$ and the function $B(t) : = \int_0^t b(s)\,ds$ satisfies $0
期刊介绍:
The aim of Azerbaijan Journal of Mathematics is to disseminate new and innovative research ideas and developments in the fields of Mathematics. Original research papers and survey articls covering all fields of mathematics are published in the journal, but special attention is paid to: mathematical analysis, ordinary differential equations, partial differential equations, mathematical physics, functional analysis, probability theory.