Amoebot模型中可重构电路的结构功率

Andreas Padalkin, C. Scheideler, Daniel Warner
{"title":"Amoebot模型中可重构电路的结构功率","authors":"Andreas Padalkin, C. Scheideler, Daniel Warner","doi":"10.48550/arXiv.2205.02610","DOIUrl":null,"url":null,"abstract":"The amoebot model [Derakhshandeh et al., 2014] has been proposed as a model for programmable matter consisting of tiny, robotic elements called amoebots. We consider the reconfigurable circuit extension [Feldmann et al., JCB 2022] of the geometric (variant of the) amoebot model that allows the amoebot structure to interconnect amoebots by so-called circuits. A circuit permits the instantaneous transmission of signals between the connected amoebots. In this paper, we examine the structural power of the reconfigurable circuits. We start with some fundamental problems like the stripe computation problem where, given any connected amoebot structure $S$, an amoebot $u$ in $S$, and some axis $X$, all amoebots belonging to axis $X$ through $u$ have to be identified. Second, we consider the global maximum problem, which identifies an amoebot at the highest possible position with respect to some direction in some given amoebot (sub)structure. A solution to this problem can then be used to solve the skeleton problem, where a (not necessarily simple) cycle of amoebots has to be found in the given amoebot structure which contains all boundary amoebots. A canonical solution to that problem can then be used to come up with a canonical path, which provides a unique characterization of the shape of the given amoebot structure. Constructing canonical paths for different directions will then allow the amoebots to set up a spanning tree and to check symmetry properties of the given amoebot structure. The problems are important for a number of applications like rapid shape transformation, energy dissemination, and structural monitoring. Interestingly, the reconfigurable circuit extension allows polylogarithmic-time solutions to all of these problems.","PeriodicalId":77708,"journal":{"name":"DNA (Mary Ann Liebert, Inc.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Structural Power of Reconfigurable Circuits in the Amoebot Model\",\"authors\":\"Andreas Padalkin, C. Scheideler, Daniel Warner\",\"doi\":\"10.48550/arXiv.2205.02610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amoebot model [Derakhshandeh et al., 2014] has been proposed as a model for programmable matter consisting of tiny, robotic elements called amoebots. We consider the reconfigurable circuit extension [Feldmann et al., JCB 2022] of the geometric (variant of the) amoebot model that allows the amoebot structure to interconnect amoebots by so-called circuits. A circuit permits the instantaneous transmission of signals between the connected amoebots. In this paper, we examine the structural power of the reconfigurable circuits. We start with some fundamental problems like the stripe computation problem where, given any connected amoebot structure $S$, an amoebot $u$ in $S$, and some axis $X$, all amoebots belonging to axis $X$ through $u$ have to be identified. Second, we consider the global maximum problem, which identifies an amoebot at the highest possible position with respect to some direction in some given amoebot (sub)structure. A solution to this problem can then be used to solve the skeleton problem, where a (not necessarily simple) cycle of amoebots has to be found in the given amoebot structure which contains all boundary amoebots. A canonical solution to that problem can then be used to come up with a canonical path, which provides a unique characterization of the shape of the given amoebot structure. Constructing canonical paths for different directions will then allow the amoebots to set up a spanning tree and to check symmetry properties of the given amoebot structure. The problems are important for a number of applications like rapid shape transformation, energy dissemination, and structural monitoring. Interestingly, the reconfigurable circuit extension allows polylogarithmic-time solutions to all of these problems.\",\"PeriodicalId\":77708,\"journal\":{\"name\":\"DNA (Mary Ann Liebert, Inc.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA (Mary Ann Liebert, Inc.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.02610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA (Mary Ann Liebert, Inc.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

变形虫模型[Derakhshandeh et al.,2014]已被提出作为一种由称为变形虫的微小机器人元件组成的可编程物质的模型。我们考虑了几何(变体)变形虫模型的可重构电路扩展[Feldmann等人,JCB 2022],该模型允许变形虫结构通过所谓的电路互连变形虫。电路允许在连接的变形虫之间即时传输信号。在本文中,我们考察了可重构电路的结构功率。我们从一些基本问题开始,比如条纹计算问题,其中,给定任何连接的变形虫结构$S$、$S$中的变形虫$u$和一些轴$X$,所有属于轴$X$~$u$的变形虫都必须被识别。其次,我们考虑全局最大值问题,该问题确定了在某个给定的变形虫(子)结构中,相对于某个方向处于最高可能位置的变形虫。然后可以使用该问题的解决方案来解决骨架问题,其中必须在包含所有边界变形虫的给定变形虫结构中找到变形虫的(不一定是简单的)循环。然后,可以使用该问题的规范解决方案来提出规范路径,该路径提供了给定变形虫结构形状的独特特征。构造不同方向的规范路径将允许变形虫建立生成树并检查给定变形虫结构的对称性。这些问题对于快速形状转换、能量传播和结构监测等许多应用都很重要。有趣的是,可重新配置的电路扩展允许所有这些问题的多对数时间解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Structural Power of Reconfigurable Circuits in the Amoebot Model
The amoebot model [Derakhshandeh et al., 2014] has been proposed as a model for programmable matter consisting of tiny, robotic elements called amoebots. We consider the reconfigurable circuit extension [Feldmann et al., JCB 2022] of the geometric (variant of the) amoebot model that allows the amoebot structure to interconnect amoebots by so-called circuits. A circuit permits the instantaneous transmission of signals between the connected amoebots. In this paper, we examine the structural power of the reconfigurable circuits. We start with some fundamental problems like the stripe computation problem where, given any connected amoebot structure $S$, an amoebot $u$ in $S$, and some axis $X$, all amoebots belonging to axis $X$ through $u$ have to be identified. Second, we consider the global maximum problem, which identifies an amoebot at the highest possible position with respect to some direction in some given amoebot (sub)structure. A solution to this problem can then be used to solve the skeleton problem, where a (not necessarily simple) cycle of amoebots has to be found in the given amoebot structure which contains all boundary amoebots. A canonical solution to that problem can then be used to come up with a canonical path, which provides a unique characterization of the shape of the given amoebot structure. Constructing canonical paths for different directions will then allow the amoebots to set up a spanning tree and to check symmetry properties of the given amoebot structure. The problems are important for a number of applications like rapid shape transformation, energy dissemination, and structural monitoring. Interestingly, the reconfigurable circuit extension allows polylogarithmic-time solutions to all of these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Proteins Specifically Assembled on a Stem-Loop Composed of a CAG Triplet Repeat Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families. Preimplantation Testing for Polygenic Disease (PGT-P): Brave New World or Mad Pursuit? From Mutation and Repair to Therapeutics Exploration of the DNA Photocleavage Activity of O-Halo-phenyl Carbamoyl Amidoximes: Studies of the UVA-Induced Effects on a Major Crop Pest, the Whitefly Bemisia tabaci
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1