背景区(白宁、济州岛)PM2.5污染与远距离大气输送特征

IF 1 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Korean Society for Atmospheric Environment Pub Date : 2022-08-31 DOI:10.5572/kosae.2022.38.4.524
Ho-Young Lee, Nam-Kyu Kim, Min-Jae Jo, Sang-Jin Lee, Jin-Soo Choi, K. Kang, Sung-Deuk Choi
{"title":"背景区(白宁、济州岛)PM2.5污染与远距离大气输送特征","authors":"Ho-Young Lee, Nam-Kyu Kim, Min-Jae Jo, Sang-Jin Lee, Jin-Soo Choi, K. Kang, Sung-Deuk Choi","doi":"10.5572/kosae.2022.38.4.524","DOIUrl":null,"url":null,"abstract":"This study evaluated the characteristics of PM2.5 pollution and long-range atmospheric transport (LRAT) at the Baengnyeong and Jeju Air Quality Research Centers in South Korea during 2018~2020. The mean concentration of PM2.5 was constant in Baengnyeong but decreased in Jeju owing to COVID-19. The significant seasonal variations of OC, EC, and NO3- in Baengnyeong and Jeju with the highest concentrations in winter may be due to the influence of high PM2.5 episodes. Meanwhile, the concentrations of SO42- and NH4+ were constant throughout the year in Baengnyeong, resulting from regional inflow from surrounding areas. The influence of anthropogenic sources and secondary formation of PM2.5 increased in summer and decreased in autumn at both sites, which was also observed at other background sites. The dominance of NO3-, K+, and Cl- in Baengnyeong was due to the influence of combustion sources and LRAT. The source of SO42-, NH4+, V, and Ni in Jeju was identified as industrial activities with the highest contribution in summer. The secondary formation of PM2.5 with external inflow effects was dominant in Baengnyeong and Jeju. The main emission source area of PM2.5 for both Baengnyeong and Jeju was East China (Hebei, Shandong, Jangsu, and Anhui), but the chemical composition and sources of PM2.5 were different between Baengnyeong and Jeju. The result of this study can be a basis for future monitoring and modeling studies on the influence of LRAT in background areas. © 2022, Journal of Korean Society for Atmospheric Environment. All rights reserved.","PeriodicalId":16269,"journal":{"name":"Journal of Korean Society for Atmospheric Environment","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of PM2.5 Pollution and Long-range Atmospheric Transport in Background Areas (Baengnyeong and Jeju Islands)\",\"authors\":\"Ho-Young Lee, Nam-Kyu Kim, Min-Jae Jo, Sang-Jin Lee, Jin-Soo Choi, K. Kang, Sung-Deuk Choi\",\"doi\":\"10.5572/kosae.2022.38.4.524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluated the characteristics of PM2.5 pollution and long-range atmospheric transport (LRAT) at the Baengnyeong and Jeju Air Quality Research Centers in South Korea during 2018~2020. The mean concentration of PM2.5 was constant in Baengnyeong but decreased in Jeju owing to COVID-19. The significant seasonal variations of OC, EC, and NO3- in Baengnyeong and Jeju with the highest concentrations in winter may be due to the influence of high PM2.5 episodes. Meanwhile, the concentrations of SO42- and NH4+ were constant throughout the year in Baengnyeong, resulting from regional inflow from surrounding areas. The influence of anthropogenic sources and secondary formation of PM2.5 increased in summer and decreased in autumn at both sites, which was also observed at other background sites. The dominance of NO3-, K+, and Cl- in Baengnyeong was due to the influence of combustion sources and LRAT. The source of SO42-, NH4+, V, and Ni in Jeju was identified as industrial activities with the highest contribution in summer. The secondary formation of PM2.5 with external inflow effects was dominant in Baengnyeong and Jeju. The main emission source area of PM2.5 for both Baengnyeong and Jeju was East China (Hebei, Shandong, Jangsu, and Anhui), but the chemical composition and sources of PM2.5 were different between Baengnyeong and Jeju. The result of this study can be a basis for future monitoring and modeling studies on the influence of LRAT in background areas. © 2022, Journal of Korean Society for Atmospheric Environment. All rights reserved.\",\"PeriodicalId\":16269,\"journal\":{\"name\":\"Journal of Korean Society for Atmospheric Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korean Society for Atmospheric Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5572/kosae.2022.38.4.524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Society for Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5572/kosae.2022.38.4.524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了2018~2020年韩国白翎岛和济州空气质量研究中心PM2.5污染和远程大气传输(LRAT)的特征。白杨的PM2.5平均浓度保持不变,但由于新冠肺炎,济州的PM2.5浓度有所下降。冬季浓度最高的白翎岛和济州的OC、EC和NO3-季节变化显著,这可能是由于高PM2.5事件的影响。同时,由于周边地区的区域性流入,白翎岛的SO42-和NH4+浓度全年保持不变。在这两个地点,PM2.5的人为来源和二次形成的影响在夏季增加,在秋季减少,在其他背景地点也观察到了这一点。NO3-、K+和Cl-在白翎岛的优势是由于燃烧源和LRAT的影响。济州SO42-、NH4+、V和Ni的来源被确定为夏季贡献最大的工业活动。具有外部流入效应的PM2.5二次形成在白翎岛和济州占主导地位。白翎岛和济州PM2.5的主要排放源区均为华东地区(河北、山东、江苏和安徽),但白翎岛与济州的PM2.5化学成分和来源不同。这项研究的结果可以为未来LRAT在背景区域的影响监测和建模研究奠定基础。©2022,《韩国大气环境学会杂志》。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characteristics of PM2.5 Pollution and Long-range Atmospheric Transport in Background Areas (Baengnyeong and Jeju Islands)
This study evaluated the characteristics of PM2.5 pollution and long-range atmospheric transport (LRAT) at the Baengnyeong and Jeju Air Quality Research Centers in South Korea during 2018~2020. The mean concentration of PM2.5 was constant in Baengnyeong but decreased in Jeju owing to COVID-19. The significant seasonal variations of OC, EC, and NO3- in Baengnyeong and Jeju with the highest concentrations in winter may be due to the influence of high PM2.5 episodes. Meanwhile, the concentrations of SO42- and NH4+ were constant throughout the year in Baengnyeong, resulting from regional inflow from surrounding areas. The influence of anthropogenic sources and secondary formation of PM2.5 increased in summer and decreased in autumn at both sites, which was also observed at other background sites. The dominance of NO3-, K+, and Cl- in Baengnyeong was due to the influence of combustion sources and LRAT. The source of SO42-, NH4+, V, and Ni in Jeju was identified as industrial activities with the highest contribution in summer. The secondary formation of PM2.5 with external inflow effects was dominant in Baengnyeong and Jeju. The main emission source area of PM2.5 for both Baengnyeong and Jeju was East China (Hebei, Shandong, Jangsu, and Anhui), but the chemical composition and sources of PM2.5 were different between Baengnyeong and Jeju. The result of this study can be a basis for future monitoring and modeling studies on the influence of LRAT in background areas. © 2022, Journal of Korean Society for Atmospheric Environment. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Korean Society for Atmospheric Environment
Journal of Korean Society for Atmospheric Environment METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.00
自引率
60.00%
发文量
50
期刊最新文献
Extraction of Emission Factors by Flight Mode (LTO, Cruise) of Domestic Aircraft and Comparison of Air Emissions during 2019~2021 Research Trend Analysis of Atmospheric Science in Korea Based on Keywords Used in the Journal of the Korean Society for Atmospheric Environment (KOSAE) during 1985~2022 Removal of Ammonia, Hydrogen Sulfide, and Methyl Mercaptan as Livestock Odor Using a Low-energy (0.2 MeV) Electron Beam Accelerator Review and Recommendations of Domestic and International Research on Aircraft-based Measurements for Air Pollutants Status of Development and Utilization of Geostationary Environmental Satellites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1