抽样和实现最小方差组合:估计、统计推断和测试

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2021-05-04 DOI:10.1002/wics.1556
Vasyl Golosnoy, Bastian Gribisch, M. Seifert
{"title":"抽样和实现最小方差组合:估计、统计推断和测试","authors":"Vasyl Golosnoy, Bastian Gribisch, M. Seifert","doi":"10.1002/wics.1556","DOIUrl":null,"url":null,"abstract":"The global minimum variance portfolio (GMVP) is the starting point of the Markowitz mean‐variance efficient frontier. The estimation of the GMVP weights is therefore of much importance for financial investors. The GMVP weights depend only on the inverse covariance matrix of returns on financial risky assets, for this reason the estimated GMVP weights are subject to substantial estimation risk, especially in high‐dimensional portfolio settings. In this paper we review the recent literature on traditional sample estimators for the unconditional GMVP weights which are typically based on daily asset returns, as well as on modern realized estimators for the conditional GMVP weights based on intraday high‐frequency returns. We present various types of GMVP estimators with the corresponding stochastic results, discuss statistical tests and point on some directions for further research. Our empirical application illustrates selected properties of realized GMVP weights.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1556","citationCount":"3","resultStr":"{\"title\":\"Sample and realized minimum variance portfolios: Estimation, statistical inference, and tests\",\"authors\":\"Vasyl Golosnoy, Bastian Gribisch, M. Seifert\",\"doi\":\"10.1002/wics.1556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global minimum variance portfolio (GMVP) is the starting point of the Markowitz mean‐variance efficient frontier. The estimation of the GMVP weights is therefore of much importance for financial investors. The GMVP weights depend only on the inverse covariance matrix of returns on financial risky assets, for this reason the estimated GMVP weights are subject to substantial estimation risk, especially in high‐dimensional portfolio settings. In this paper we review the recent literature on traditional sample estimators for the unconditional GMVP weights which are typically based on daily asset returns, as well as on modern realized estimators for the conditional GMVP weights based on intraday high‐frequency returns. We present various types of GMVP estimators with the corresponding stochastic results, discuss statistical tests and point on some directions for further research. Our empirical application illustrates selected properties of realized GMVP weights.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1556\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1556\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1556","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

全局最小方差组合(GMVP)是马科维茨均值方差有效边界的起点。因此,GMVP权重的估计对金融投资者来说非常重要。GMVP权重仅依赖于金融风险资产收益的逆协方差矩阵,因此估计的GMVP权重受到很大的估计风险,特别是在高维投资组合设置中。在本文中,我们回顾了最近关于无条件GMVP权重的传统样本估计器(通常基于每日资产收益)以及基于日内高频收益的条件GMVP权重的现代实现估计器的文献。给出了各种类型的GMVP估计量及其相应的随机结果,讨论了统计检验,并指出了进一步研究的方向。我们的经验应用说明了实现GMVP权重的选择属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sample and realized minimum variance portfolios: Estimation, statistical inference, and tests
The global minimum variance portfolio (GMVP) is the starting point of the Markowitz mean‐variance efficient frontier. The estimation of the GMVP weights is therefore of much importance for financial investors. The GMVP weights depend only on the inverse covariance matrix of returns on financial risky assets, for this reason the estimated GMVP weights are subject to substantial estimation risk, especially in high‐dimensional portfolio settings. In this paper we review the recent literature on traditional sample estimators for the unconditional GMVP weights which are typically based on daily asset returns, as well as on modern realized estimators for the conditional GMVP weights based on intraday high‐frequency returns. We present various types of GMVP estimators with the corresponding stochastic results, discuss statistical tests and point on some directions for further research. Our empirical application illustrates selected properties of realized GMVP weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1