Daichi Kohmoto, K. Miyazaki, Masahito Morita, K. Fukuda, Takeshi Abe
{"title":"利用operando x射线计算机断层扫描分析在充放电试验中检测镍锌电池的电化学变化","authors":"Daichi Kohmoto, K. Miyazaki, Masahito Morita, K. Fukuda, Takeshi Abe","doi":"10.1002/xrs.3400","DOIUrl":null,"url":null,"abstract":"This study developed a method to detect and analyze deterioration in sections of a battery during charge–discharge tests in real time. This method is based on a time‐series analysis using x‐ray computed tomography, three‐dimensional reconstruction of the battery volume, and unsupervised machine learning. The developed method detects not only electrochemical changes in a battery through the conventional voltage‐capacity diagram but also physical changes such as the deterioration of the parts of a battery that cannot be found via human inspection directly from the sliced images of the three‐dimensional reconstructed volumes. Furthermore, the characteristics of these changes inside a battery can be captured through precise analysis using persistent homology, a mathematical machinery, at degrees 0 and 1. This demonstrates that our method can capture both continuous and discrete structural changes (e.g., a continuous deformation of active materials and compounds that are precipitated randomly in the electrolytes) within a battery. As a by‐product, the start of the venting system implemented near the anode of a battery can be detected using the method from a specific cycle during the charge–discharge tests.","PeriodicalId":23867,"journal":{"name":"X-Ray Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting electrochemical changes in a nickel–zinc battery by operando x‐ray computed‐tomography analysis during charge–discharge tests\",\"authors\":\"Daichi Kohmoto, K. Miyazaki, Masahito Morita, K. Fukuda, Takeshi Abe\",\"doi\":\"10.1002/xrs.3400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study developed a method to detect and analyze deterioration in sections of a battery during charge–discharge tests in real time. This method is based on a time‐series analysis using x‐ray computed tomography, three‐dimensional reconstruction of the battery volume, and unsupervised machine learning. The developed method detects not only electrochemical changes in a battery through the conventional voltage‐capacity diagram but also physical changes such as the deterioration of the parts of a battery that cannot be found via human inspection directly from the sliced images of the three‐dimensional reconstructed volumes. Furthermore, the characteristics of these changes inside a battery can be captured through precise analysis using persistent homology, a mathematical machinery, at degrees 0 and 1. This demonstrates that our method can capture both continuous and discrete structural changes (e.g., a continuous deformation of active materials and compounds that are precipitated randomly in the electrolytes) within a battery. As a by‐product, the start of the venting system implemented near the anode of a battery can be detected using the method from a specific cycle during the charge–discharge tests.\",\"PeriodicalId\":23867,\"journal\":{\"name\":\"X-Ray Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"X-Ray Spectrometry\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/xrs.3400\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"X-Ray Spectrometry","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/xrs.3400","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Detecting electrochemical changes in a nickel–zinc battery by operando x‐ray computed‐tomography analysis during charge–discharge tests
This study developed a method to detect and analyze deterioration in sections of a battery during charge–discharge tests in real time. This method is based on a time‐series analysis using x‐ray computed tomography, three‐dimensional reconstruction of the battery volume, and unsupervised machine learning. The developed method detects not only electrochemical changes in a battery through the conventional voltage‐capacity diagram but also physical changes such as the deterioration of the parts of a battery that cannot be found via human inspection directly from the sliced images of the three‐dimensional reconstructed volumes. Furthermore, the characteristics of these changes inside a battery can be captured through precise analysis using persistent homology, a mathematical machinery, at degrees 0 and 1. This demonstrates that our method can capture both continuous and discrete structural changes (e.g., a continuous deformation of active materials and compounds that are precipitated randomly in the electrolytes) within a battery. As a by‐product, the start of the venting system implemented near the anode of a battery can be detected using the method from a specific cycle during the charge–discharge tests.
期刊介绍:
X-Ray Spectrometry is devoted to the rapid publication of papers dealing with the theory and application of x-ray spectrometry using electron, x-ray photon, proton, γ and γ-x sources.
Covering advances in techniques, methods and equipment, this established journal provides the ideal platform for the discussion of more sophisticated X-ray analytical methods.
Both wavelength and energy dispersion systems are covered together with a range of data handling methods, from the most simple to very sophisticated software programs. Papers dealing with the application of x-ray spectrometric methods for structural analysis are also featured as well as applications papers covering a wide range of areas such as environmental analysis and monitoring, art and archaelogical studies, mineralogy, forensics, geology, surface science and materials analysis, biomedical and pharmaceutical applications.