{"title":"Sasaki–Einstein结构的投影几何及其紧致化","authors":"A. Gover, Katharina Neusser, T. Willse","doi":"10.4064/dm786-7-2019","DOIUrl":null,"url":null,"abstract":"We show that the standard definitions of Sasaki structures have elegant and simplifying interpretations in terms of projective differential geometry. For Sasaki-Einstein structures we use projective geometry to provide a resolution of such structures into geometrically less rigid components; the latter elemental components are separately, complex, orthogonal, and symplectic holonomy reductions of the canonical projective tractor/Cartan connection. This leads to a characterisation of Sasaki-Einstein structures as projective structures with certain unitary holonomy reductions. As an immediate application, this is used to describe the projective compactification of indefinite (suitably) complete non-compact Sasaki-Einstein structures and to prove that the boundary at infinity is a Fefferman conformal manifold that thus fibres over a nondegenerate CR manifold (of hypersurface type). We prove that this CR manifold coincides with the boundary at infinity for the c-projective compactification of the K\\\"ahler-Einstein manifold that arises, in the usual way, as a leaf space for the defining Killing field of the given Sasaki-Einstein manifold. A procedure for constructing examples is given. The discussion of symplectic holonomy reductions of projective structures leads us moreover to a new and simplifying approach to contact projective geometry. This is of independent interest and is treated in some detail.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Projective geometry of Sasaki–Einstein structures and their compactification\",\"authors\":\"A. Gover, Katharina Neusser, T. Willse\",\"doi\":\"10.4064/dm786-7-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the standard definitions of Sasaki structures have elegant and simplifying interpretations in terms of projective differential geometry. For Sasaki-Einstein structures we use projective geometry to provide a resolution of such structures into geometrically less rigid components; the latter elemental components are separately, complex, orthogonal, and symplectic holonomy reductions of the canonical projective tractor/Cartan connection. This leads to a characterisation of Sasaki-Einstein structures as projective structures with certain unitary holonomy reductions. As an immediate application, this is used to describe the projective compactification of indefinite (suitably) complete non-compact Sasaki-Einstein structures and to prove that the boundary at infinity is a Fefferman conformal manifold that thus fibres over a nondegenerate CR manifold (of hypersurface type). We prove that this CR manifold coincides with the boundary at infinity for the c-projective compactification of the K\\\\\\\"ahler-Einstein manifold that arises, in the usual way, as a leaf space for the defining Killing field of the given Sasaki-Einstein manifold. A procedure for constructing examples is given. The discussion of symplectic holonomy reductions of projective structures leads us moreover to a new and simplifying approach to contact projective geometry. This is of independent interest and is treated in some detail.\",\"PeriodicalId\":51016,\"journal\":{\"name\":\"Dissertationes Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissertationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm786-7-2019\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm786-7-2019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Projective geometry of Sasaki–Einstein structures and their compactification
We show that the standard definitions of Sasaki structures have elegant and simplifying interpretations in terms of projective differential geometry. For Sasaki-Einstein structures we use projective geometry to provide a resolution of such structures into geometrically less rigid components; the latter elemental components are separately, complex, orthogonal, and symplectic holonomy reductions of the canonical projective tractor/Cartan connection. This leads to a characterisation of Sasaki-Einstein structures as projective structures with certain unitary holonomy reductions. As an immediate application, this is used to describe the projective compactification of indefinite (suitably) complete non-compact Sasaki-Einstein structures and to prove that the boundary at infinity is a Fefferman conformal manifold that thus fibres over a nondegenerate CR manifold (of hypersurface type). We prove that this CR manifold coincides with the boundary at infinity for the c-projective compactification of the K\"ahler-Einstein manifold that arises, in the usual way, as a leaf space for the defining Killing field of the given Sasaki-Einstein manifold. A procedure for constructing examples is given. The discussion of symplectic holonomy reductions of projective structures leads us moreover to a new and simplifying approach to contact projective geometry. This is of independent interest and is treated in some detail.
期刊介绍:
DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary.
The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.