{"title":"同步辐射光束尺寸测量干涉仪的设计与仿真","authors":"Sun Liangwei, Luo Qing","doi":"10.11884/HPLPB202133.210236","DOIUrl":null,"url":null,"abstract":"The interferometric measurement of the transverse beam size based on synchrotron radiation is a non-intercepting high precision measurement method. Compared with the imaging method, the interferometric method can measure smaller beam size and get better resolution. It is expected to obtain submicron resolution at shorter measurement wavelength, so it is widely used in synchrotron radiation sources. The upgraded scheme of current interference device in Hefei Light Source HLS-II is presented in this paper. It is proposed to replace the first focusing lens in the original interference light path with an RC structure focusing mirror, and the second single lens with a doublet lens. The design goal of this paper is to reduce dispersion and geometric aberration without changing the optical axis of the optical path, so as to improve the imaging quality of the optical path. The geometrical optical path design is used to evaluate the imaging quality of the optical path, and physical optical simulation is performed to obtain the interference fringes of the measurement system. The simulation results show that the radius of Airy spot is reduced by about 35%, the root mean square radius of dot array is reduced by about 99%, the wavefront difference is reduced by about 75%, and the cutoff frequency of MTF function is increased by about 65%, using a focusing mirror to replace the original focusing lens can greatly improve the image quality of the optical path.","PeriodicalId":39871,"journal":{"name":"强激光与粒子束","volume":"33 1","pages":"084002-1-084002-8"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and simulation of interferometer for synchrotron radiation beam size measurement\",\"authors\":\"Sun Liangwei, Luo Qing\",\"doi\":\"10.11884/HPLPB202133.210236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interferometric measurement of the transverse beam size based on synchrotron radiation is a non-intercepting high precision measurement method. Compared with the imaging method, the interferometric method can measure smaller beam size and get better resolution. It is expected to obtain submicron resolution at shorter measurement wavelength, so it is widely used in synchrotron radiation sources. The upgraded scheme of current interference device in Hefei Light Source HLS-II is presented in this paper. It is proposed to replace the first focusing lens in the original interference light path with an RC structure focusing mirror, and the second single lens with a doublet lens. The design goal of this paper is to reduce dispersion and geometric aberration without changing the optical axis of the optical path, so as to improve the imaging quality of the optical path. The geometrical optical path design is used to evaluate the imaging quality of the optical path, and physical optical simulation is performed to obtain the interference fringes of the measurement system. The simulation results show that the radius of Airy spot is reduced by about 35%, the root mean square radius of dot array is reduced by about 99%, the wavefront difference is reduced by about 75%, and the cutoff frequency of MTF function is increased by about 65%, using a focusing mirror to replace the original focusing lens can greatly improve the image quality of the optical path.\",\"PeriodicalId\":39871,\"journal\":{\"name\":\"强激光与粒子束\",\"volume\":\"33 1\",\"pages\":\"084002-1-084002-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"强激光与粒子束\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.11884/HPLPB202133.210236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"强激光与粒子束","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11884/HPLPB202133.210236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Design and simulation of interferometer for synchrotron radiation beam size measurement
The interferometric measurement of the transverse beam size based on synchrotron radiation is a non-intercepting high precision measurement method. Compared with the imaging method, the interferometric method can measure smaller beam size and get better resolution. It is expected to obtain submicron resolution at shorter measurement wavelength, so it is widely used in synchrotron radiation sources. The upgraded scheme of current interference device in Hefei Light Source HLS-II is presented in this paper. It is proposed to replace the first focusing lens in the original interference light path with an RC structure focusing mirror, and the second single lens with a doublet lens. The design goal of this paper is to reduce dispersion and geometric aberration without changing the optical axis of the optical path, so as to improve the imaging quality of the optical path. The geometrical optical path design is used to evaluate the imaging quality of the optical path, and physical optical simulation is performed to obtain the interference fringes of the measurement system. The simulation results show that the radius of Airy spot is reduced by about 35%, the root mean square radius of dot array is reduced by about 99%, the wavefront difference is reduced by about 75%, and the cutoff frequency of MTF function is increased by about 65%, using a focusing mirror to replace the original focusing lens can greatly improve the image quality of the optical path.