{"title":"“坚持今天,明天在这里”——铜绿假单胞菌的胞外多糖产量如何受到高流量剪切条件的影响?","authors":"W. Allan, M. Webber, Kevin Wright, Tim W. Overton","doi":"10.5194/biofilms9-69","DOIUrl":null,"url":null,"abstract":"Biofilms provide physical, mechanical and chemical protection for microbes from their external environment, necessitating the use of harsh chemicals (such as sanitisers and antimicrobials) and abrasive cleaning (brushing or pigging) for their control. Biofilms have a broad impact upon the manufacturing of a wide range of fast-moving consumer goods, and biofilm contamination during their manufacture can lead to production interruption and significant economic costs to industry for cleaning and sanitisation. Biofilms formed by Pseudomonas aeruginosa (Ps. a.), a major contaminant of industrial processes, have yet to be studied in-depth with respect to the changes that occur in response to high-flow shear conditions from a combined physical and biological perspective.","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Adhere today, here tomorrow” – how is exopolysaccharide production by Pseudomonas aeruginosa affected by high-flow shear conditions?\",\"authors\":\"W. Allan, M. Webber, Kevin Wright, Tim W. Overton\",\"doi\":\"10.5194/biofilms9-69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biofilms provide physical, mechanical and chemical protection for microbes from their external environment, necessitating the use of harsh chemicals (such as sanitisers and antimicrobials) and abrasive cleaning (brushing or pigging) for their control. Biofilms have a broad impact upon the manufacturing of a wide range of fast-moving consumer goods, and biofilm contamination during their manufacture can lead to production interruption and significant economic costs to industry for cleaning and sanitisation. Biofilms formed by Pseudomonas aeruginosa (Ps. a.), a major contaminant of industrial processes, have yet to be studied in-depth with respect to the changes that occur in response to high-flow shear conditions from a combined physical and biological perspective.\",\"PeriodicalId\":87392,\"journal\":{\"name\":\"Biofilms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/biofilms9-69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/biofilms9-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
“Adhere today, here tomorrow” – how is exopolysaccharide production by Pseudomonas aeruginosa affected by high-flow shear conditions?
Biofilms provide physical, mechanical and chemical protection for microbes from their external environment, necessitating the use of harsh chemicals (such as sanitisers and antimicrobials) and abrasive cleaning (brushing or pigging) for their control. Biofilms have a broad impact upon the manufacturing of a wide range of fast-moving consumer goods, and biofilm contamination during their manufacture can lead to production interruption and significant economic costs to industry for cleaning and sanitisation. Biofilms formed by Pseudomonas aeruginosa (Ps. a.), a major contaminant of industrial processes, have yet to be studied in-depth with respect to the changes that occur in response to high-flow shear conditions from a combined physical and biological perspective.