使用Shiny的应用程序进行统计分析和实验室工作流程

IF 1.1 4区 医学 Q4 MEDICAL LABORATORY TECHNOLOGY Journal of Laboratory Medicine Pub Date : 2023-05-19 DOI:10.1515/labmed-2023-0020
Julian E. Gebauer, Jakob Adler
{"title":"使用Shiny的应用程序进行统计分析和实验室工作流程","authors":"Julian E. Gebauer, Jakob Adler","doi":"10.1515/labmed-2023-0020","DOIUrl":null,"url":null,"abstract":"Abstract In many areas of healthcare, digitization has progressed only slowly so far. The SARS-CoV-2 pandemic in particular has shown how valuable software solutions that are deployable at short notice, can be. In this review we present some selected possibilities of the easy-to-learn programming language R and demonstrate potential applications of the package Shiny in the fields of statistical analysis and laboratory medicine. In addition to a brief tabular overview of published applications, we present two examples of their use in routine laboratory workflows. The first example demonstrates how a Shiny app can be used to estimate the minimal difference (MD) of laboratory analytes, while the second example illustrates how pre- and post-analytical processing steps can be integrated into a fully automated workflow using R and the Shiny package.","PeriodicalId":55986,"journal":{"name":"Journal of Laboratory Medicine","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Shiny apps for statistical analyses and laboratory workflows\",\"authors\":\"Julian E. Gebauer, Jakob Adler\",\"doi\":\"10.1515/labmed-2023-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In many areas of healthcare, digitization has progressed only slowly so far. The SARS-CoV-2 pandemic in particular has shown how valuable software solutions that are deployable at short notice, can be. In this review we present some selected possibilities of the easy-to-learn programming language R and demonstrate potential applications of the package Shiny in the fields of statistical analysis and laboratory medicine. In addition to a brief tabular overview of published applications, we present two examples of their use in routine laboratory workflows. The first example demonstrates how a Shiny app can be used to estimate the minimal difference (MD) of laboratory analytes, while the second example illustrates how pre- and post-analytical processing steps can be integrated into a fully automated workflow using R and the Shiny package.\",\"PeriodicalId\":55986,\"journal\":{\"name\":\"Journal of Laboratory Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laboratory Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/labmed-2023-0020\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laboratory Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/labmed-2023-0020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

在医疗保健的许多领域,数字化迄今为止进展缓慢。特别是SARS-CoV-2大流行表明,在短时间内可部署的软件解决方案是多么有价值。在这篇综述中,我们介绍了一些易于学习的编程语言R的选择可能性,并展示了Shiny包在统计分析和实验室医学领域的潜在应用。除了简要概述已发布的应用程序的表格外,我们还提供了在常规实验室工作流程中使用它们的两个示例。第一个示例演示了如何使用Shiny应用程序来估计实验室分析物的最小差异(MD),而第二个示例说明了如何使用R和Shiny包将分析前和分析后处理步骤集成到全自动工作流程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Shiny apps for statistical analyses and laboratory workflows
Abstract In many areas of healthcare, digitization has progressed only slowly so far. The SARS-CoV-2 pandemic in particular has shown how valuable software solutions that are deployable at short notice, can be. In this review we present some selected possibilities of the easy-to-learn programming language R and demonstrate potential applications of the package Shiny in the fields of statistical analysis and laboratory medicine. In addition to a brief tabular overview of published applications, we present two examples of their use in routine laboratory workflows. The first example demonstrates how a Shiny app can be used to estimate the minimal difference (MD) of laboratory analytes, while the second example illustrates how pre- and post-analytical processing steps can be integrated into a fully automated workflow using R and the Shiny package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Laboratory Medicine
Journal of Laboratory Medicine Mathematics-Discrete Mathematics and Combinatorics
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊介绍: The Journal of Laboratory Medicine (JLM) is a bi-monthly published journal that reports on the latest developments in laboratory medicine. Particular focus is placed on the diagnostic aspects of the clinical laboratory, although technical, regulatory, and educational topics are equally covered. The Journal specializes in the publication of high-standard, competent and timely review articles on clinical, methodological and pathogenic aspects of modern laboratory diagnostics. These reviews are critically reviewed by expert reviewers and JLM’s Associate Editors who are specialists in the various subdisciplines of laboratory medicine. In addition, JLM publishes original research articles, case reports, point/counterpoint articles and letters to the editor, all of which are peer reviewed by at least two experts in the field.
期刊最新文献
Assessing the stability of uncentrifuged serum and plasma analytes at various post-collection intervals How Gaussian mixture modelling can help to verify reference intervals from laboratory data with a high proportion of pathological values Using machine learning techniques for exploration and classification of laboratory data Automated sex and age partitioning for the estimation of reference intervals using a regression tree model Serum LDH and its isoenzymes (LDH2 and LDH5) associated with predictive value for refractory mycoplasma pneumoniae pneumonia in children
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1