{"title":"截尾分位数回归的矩估计","authors":"Qian Wang, S. Chen","doi":"10.1080/07474938.2021.1889207","DOIUrl":null,"url":null,"abstract":"Abstract In influential articles Powell (Journal of Econometrics 25(3):303–325, 1984; Journal of Econometrics 32(1):143–155, 1986) proposed optimization-based censored least absolute deviations estimator (CLAD) and general censored quantile regression estimator (CQR). It has been recognized, however, that this optimization-based estimator may perform poorly in finite samples (e.g., Khan and Powell, Journal of Econometrics 103(1–2):73–110, 2001; Fitzenberger, Handbook of Statistics. Elsevier, 1996; Fitzenberger and Winker, Computational Statistics & Data Analysis 52(1):88–108, 2007; Koenker, Journal of Statistical Software 27(6), 2008). In this paper we propose a moment-based censored quantile regression estimator (MCQR). While both the CQR and MCQR estimators have the same large sample properties, our simulation results suggest certain advantage of our moment-based estimator (MCQR). In addition, the empirical likelihood methods for the uncensored model (e.g., Whang 2006; Otsu, Journal of Econometrics 142(1):508–538, 2008) can readily be adapted to the censored model within our method of moment estimation framework. When both censoring and endogeneity are present, we develop an instrumental variable censored quantile regression estimator (IVCQR) by combining the insights of Chernozhukov and Hansen’s (Journal of Econometrics 132(2):491–525, 2006; Journal of Econometrics 142(1):379–398, 2008) instrumental variables quantile regression estimator (IVQR) and the MCQR. Simulation results indicate that the IVCQR estimator performs well.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"40 1","pages":"815 - 829"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474938.2021.1889207","citationCount":"6","resultStr":"{\"title\":\"Moment estimation for censored quantile regression\",\"authors\":\"Qian Wang, S. Chen\",\"doi\":\"10.1080/07474938.2021.1889207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In influential articles Powell (Journal of Econometrics 25(3):303–325, 1984; Journal of Econometrics 32(1):143–155, 1986) proposed optimization-based censored least absolute deviations estimator (CLAD) and general censored quantile regression estimator (CQR). It has been recognized, however, that this optimization-based estimator may perform poorly in finite samples (e.g., Khan and Powell, Journal of Econometrics 103(1–2):73–110, 2001; Fitzenberger, Handbook of Statistics. Elsevier, 1996; Fitzenberger and Winker, Computational Statistics & Data Analysis 52(1):88–108, 2007; Koenker, Journal of Statistical Software 27(6), 2008). In this paper we propose a moment-based censored quantile regression estimator (MCQR). While both the CQR and MCQR estimators have the same large sample properties, our simulation results suggest certain advantage of our moment-based estimator (MCQR). In addition, the empirical likelihood methods for the uncensored model (e.g., Whang 2006; Otsu, Journal of Econometrics 142(1):508–538, 2008) can readily be adapted to the censored model within our method of moment estimation framework. When both censoring and endogeneity are present, we develop an instrumental variable censored quantile regression estimator (IVCQR) by combining the insights of Chernozhukov and Hansen’s (Journal of Econometrics 132(2):491–525, 2006; Journal of Econometrics 142(1):379–398, 2008) instrumental variables quantile regression estimator (IVQR) and the MCQR. Simulation results indicate that the IVCQR estimator performs well.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"40 1\",\"pages\":\"815 - 829\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474938.2021.1889207\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2021.1889207\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.1889207","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 6
摘要
鲍威尔(Journal of Econometrics, 25(3): 303-325, 1984;计量经济学学报,32(1):143-155,1986)提出了基于优化的截后最小绝对偏差估计(CLAD)和一般截后分位数回归估计(CQR)。然而,人们已经认识到,这种基于优化的估计器在有限样本中可能表现不佳(例如,Khan和Powell, Journal of Econometrics 103(1-2):73 - 110,2001;菲岑伯格,《统计手册》。爱思唯尔,1996;菲岑伯格和温克,计算统计与数据分析52(1):88-108,2007;Koenker, Journal of Statistical Software 27(6), 2008)。本文提出了一种基于矩的截尾分位数回归估计器。虽然CQR和MCQR估计器都具有相同的大样本特性,但我们的仿真结果表明,我们的矩基估计器(MCQR)具有一定的优势。此外,未经审查的模型的经验似然方法(例如,Whang 2006;Otsu, Journal of Econometrics 142(1): 508-538, 2008)可以很容易地在我们的矩估计框架方法中适应删节模型。结合Chernozhukov和Hansen的见解(Journal Econometrics 132(2):491 - 525,2006),我们开发了工具变量删节分位数回归估计(IVCQR);计量经济学报(1):1 - 4 .中国经济发展的新趋势。仿真结果表明,该IVCQR估计器性能良好。
Moment estimation for censored quantile regression
Abstract In influential articles Powell (Journal of Econometrics 25(3):303–325, 1984; Journal of Econometrics 32(1):143–155, 1986) proposed optimization-based censored least absolute deviations estimator (CLAD) and general censored quantile regression estimator (CQR). It has been recognized, however, that this optimization-based estimator may perform poorly in finite samples (e.g., Khan and Powell, Journal of Econometrics 103(1–2):73–110, 2001; Fitzenberger, Handbook of Statistics. Elsevier, 1996; Fitzenberger and Winker, Computational Statistics & Data Analysis 52(1):88–108, 2007; Koenker, Journal of Statistical Software 27(6), 2008). In this paper we propose a moment-based censored quantile regression estimator (MCQR). While both the CQR and MCQR estimators have the same large sample properties, our simulation results suggest certain advantage of our moment-based estimator (MCQR). In addition, the empirical likelihood methods for the uncensored model (e.g., Whang 2006; Otsu, Journal of Econometrics 142(1):508–538, 2008) can readily be adapted to the censored model within our method of moment estimation framework. When both censoring and endogeneity are present, we develop an instrumental variable censored quantile regression estimator (IVCQR) by combining the insights of Chernozhukov and Hansen’s (Journal of Econometrics 132(2):491–525, 2006; Journal of Econometrics 142(1):379–398, 2008) instrumental variables quantile regression estimator (IVQR) and the MCQR. Simulation results indicate that the IVCQR estimator performs well.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.