从p-Wasserstein界到中等偏差

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY Electronic Journal of Probability Pub Date : 2022-05-26 DOI:10.1214/23-ejp976
Xiao Fang, Yuta Koike
{"title":"从p-Wasserstein界到中等偏差","authors":"Xiao Fang, Yuta Koike","doi":"10.1214/23-ejp976","DOIUrl":null,"url":null,"abstract":"We use a new method via $p$-Wasserstein bounds to prove Cram\\'er-type moderate deviations in (multivariate) normal approximations. In the classical setting that $W$ is a standardized sum of $n$ independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of $0\\leq x=o(n^{1/6})$ and the near optimal error rate $O(1)(1+x)(\\log n+x^2)/\\sqrt{n}$ for $P(W>x)/(1-\\Phi(x))\\to 1$, where $\\Phi$ is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the $p$-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like $O(p^\\alpha \\Delta)$, $1\\leq p\\leq p_0$, for some constants $\\alpha, \\Delta$ and $p_0$. In the above i.i.d. setting, $\\alpha=1, \\Delta=1/\\sqrt{n}, p_0=n^{1/3}$. For this purpose, we obtain general $p$-Wasserstein bounds in (multivariate) normal approximations using Stein's method.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"From p-Wasserstein bounds to moderate deviations\",\"authors\":\"Xiao Fang, Yuta Koike\",\"doi\":\"10.1214/23-ejp976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a new method via $p$-Wasserstein bounds to prove Cram\\\\'er-type moderate deviations in (multivariate) normal approximations. In the classical setting that $W$ is a standardized sum of $n$ independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of $0\\\\leq x=o(n^{1/6})$ and the near optimal error rate $O(1)(1+x)(\\\\log n+x^2)/\\\\sqrt{n}$ for $P(W>x)/(1-\\\\Phi(x))\\\\to 1$, where $\\\\Phi$ is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the $p$-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like $O(p^\\\\alpha \\\\Delta)$, $1\\\\leq p\\\\leq p_0$, for some constants $\\\\alpha, \\\\Delta$ and $p_0$. In the above i.i.d. setting, $\\\\alpha=1, \\\\Delta=1/\\\\sqrt{n}, p_0=n^{1/3}$. For this purpose, we obtain general $p$-Wasserstein bounds in (multivariate) normal approximations using Stein's method.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp976\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp976","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

我们使用一种新的方法,通过$p$-Waserstein界来证明(多元)正态近似中的Cram’er型中偏差。在$W$是具有次指数尾的$n$独立同分布(i.i.d.)随机变量的标准和的经典设置中,我们的方法恢复了$0\leq x=o(n^{1/6})$的最优范围和$P(W>x)/(1-\Phi(x))\到1$的近似最优错误率$o(1)(1+x)(\log n+x^2)/\sqrt{n}$,其中$\Phi$是标准正态分布函数。我们的方法也适用于因随机变量(向量),并应用于组合中心极限定理、维纳混沌、齐次和和局部依赖。我们方法的关键步骤是证明,对于一些常数$\alpha、\Delta$和$p_0$,感兴趣的随机变量(向量)的分布和正态分布之间的$p$-Waserstein距离增长为$O(p^\alpha\Delta)$、$1\leq p\leq p_0$。在上述i.i.d.设置中,$\alpha=1,\Delta=1/\sqrt{n},p_0=n^{1/3}$。为此,我们使用Stein方法获得了(多元)正态近似中的一般$p$-Waserstein界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From p-Wasserstein bounds to moderate deviations
We use a new method via $p$-Wasserstein bounds to prove Cram\'er-type moderate deviations in (multivariate) normal approximations. In the classical setting that $W$ is a standardized sum of $n$ independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of $0\leq x=o(n^{1/6})$ and the near optimal error rate $O(1)(1+x)(\log n+x^2)/\sqrt{n}$ for $P(W>x)/(1-\Phi(x))\to 1$, where $\Phi$ is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the $p$-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like $O(p^\alpha \Delta)$, $1\leq p\leq p_0$, for some constants $\alpha, \Delta$ and $p_0$. In the above i.i.d. setting, $\alpha=1, \Delta=1/\sqrt{n}, p_0=n^{1/3}$. For this purpose, we obtain general $p$-Wasserstein bounds in (multivariate) normal approximations using Stein's method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
期刊最新文献
A Palm space approach to non-linear Hawkes processes Stochastic evolution equations with Wick-polynomial nonlinearities Corrigendum to: The sum of powers of subtree sizes for conditioned Galton–Watson trees Stochastic sewing in Banach spaces Convergence rate for geometric statistics of point processes having fast decay of dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1