{"title":"软件定义网络中的链路故障恢复机制","authors":"Shrinivas Petale, Jaisingh Thangaraj","doi":"10.1109/JSAC.2020.2986668","DOIUrl":null,"url":null,"abstract":"In traditional networks, the pre-routed packets are dropped during the link failure leading to a huge data loss. Survivability techniques such as protection and restoration are available to provide the solution before and after the link failure. But, the new flow entries that are to be added in the flow table increase the initial network demand leading to an increase in memory demand per switch. The saved data not only reduces the network speed but also demands of repeated processing of entries. In this paper, we propose a new scheme of Group Table based Rerouting (GTR) technique to find the response against single link failure through Fast Fail-over (FF) group table feature provided by OpenFlow. This scheme provides equal roles for both controllers and forwarding OpenFlow enabled switches. Here, the controller maintains a look-up table which is updated periodically according to the change in network structure. Also, it has to update the FF group table simultaneously corresponding to every active port of the switches. The controller relabels the packets and updates the flow entries on respective switches.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1285-1292"},"PeriodicalIF":13.8000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986668","citationCount":"25","resultStr":"{\"title\":\"Link Failure Recovery Mechanism in Software Defined Networks\",\"authors\":\"Shrinivas Petale, Jaisingh Thangaraj\",\"doi\":\"10.1109/JSAC.2020.2986668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In traditional networks, the pre-routed packets are dropped during the link failure leading to a huge data loss. Survivability techniques such as protection and restoration are available to provide the solution before and after the link failure. But, the new flow entries that are to be added in the flow table increase the initial network demand leading to an increase in memory demand per switch. The saved data not only reduces the network speed but also demands of repeated processing of entries. In this paper, we propose a new scheme of Group Table based Rerouting (GTR) technique to find the response against single link failure through Fast Fail-over (FF) group table feature provided by OpenFlow. This scheme provides equal roles for both controllers and forwarding OpenFlow enabled switches. Here, the controller maintains a look-up table which is updated periodically according to the change in network structure. Also, it has to update the FF group table simultaneously corresponding to every active port of the switches. The controller relabels the packets and updates the flow entries on respective switches.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"38 1\",\"pages\":\"1285-1292\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986668\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2020.2986668\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2986668","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Link Failure Recovery Mechanism in Software Defined Networks
In traditional networks, the pre-routed packets are dropped during the link failure leading to a huge data loss. Survivability techniques such as protection and restoration are available to provide the solution before and after the link failure. But, the new flow entries that are to be added in the flow table increase the initial network demand leading to an increase in memory demand per switch. The saved data not only reduces the network speed but also demands of repeated processing of entries. In this paper, we propose a new scheme of Group Table based Rerouting (GTR) technique to find the response against single link failure through Fast Fail-over (FF) group table feature provided by OpenFlow. This scheme provides equal roles for both controllers and forwarding OpenFlow enabled switches. Here, the controller maintains a look-up table which is updated periodically according to the change in network structure. Also, it has to update the FF group table simultaneously corresponding to every active port of the switches. The controller relabels the packets and updates the flow entries on respective switches.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.