海马依赖性记忆的去甲肾上腺素能调节。

P. Nguyen, Steven A. Connor
{"title":"海马依赖性记忆的去甲肾上腺素能调节。","authors":"P. Nguyen, Steven A. Connor","doi":"10.2174/1871524919666190719163632","DOIUrl":null,"url":null,"abstract":"Neuromodulation regulates critical functions of CNS synapses, ranging from neural circuit development to high-order cognitive processes, including learning and memory. This broad scope of action is generally mediated through alterations of the strength of synaptic transmission (i.e. synaptic plasticity). Changes in synaptic strength are widely considered to be a cellular representation of learned information. Noradrenaline is a neuromodulator that is secreted throughout the brain in response to novelty or increased arousal. Once released, noradrenaline activates metabotropic receptors, initiating intracellular signaling cascades that promote enduring changes in synaptic strength and facilitate memory storage. Here, we provide an overview of noradrenergic modulation of synaptic plasticity and memory formation within mammalian neural circuits, which has broad applicability within the neurotherapeutics community. Advances in our understanding of noradrenaline in the context of these processes may provide a foundation for refining treatment strategies for multiple brain diseases, ranging from post-traumatic stress disorder to Alzheimer's Disease.","PeriodicalId":9799,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":"19 3 1","pages":"187-196"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1871524919666190719163632","citationCount":"12","resultStr":"{\"title\":\"Noradrenergic Regulation of Hippocampus-Dependent Memory.\",\"authors\":\"P. Nguyen, Steven A. Connor\",\"doi\":\"10.2174/1871524919666190719163632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromodulation regulates critical functions of CNS synapses, ranging from neural circuit development to high-order cognitive processes, including learning and memory. This broad scope of action is generally mediated through alterations of the strength of synaptic transmission (i.e. synaptic plasticity). Changes in synaptic strength are widely considered to be a cellular representation of learned information. Noradrenaline is a neuromodulator that is secreted throughout the brain in response to novelty or increased arousal. Once released, noradrenaline activates metabotropic receptors, initiating intracellular signaling cascades that promote enduring changes in synaptic strength and facilitate memory storage. Here, we provide an overview of noradrenergic modulation of synaptic plasticity and memory formation within mammalian neural circuits, which has broad applicability within the neurotherapeutics community. Advances in our understanding of noradrenaline in the context of these processes may provide a foundation for refining treatment strategies for multiple brain diseases, ranging from post-traumatic stress disorder to Alzheimer's Disease.\",\"PeriodicalId\":9799,\"journal\":{\"name\":\"Central nervous system agents in medicinal chemistry\",\"volume\":\"19 3 1\",\"pages\":\"187-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1871524919666190719163632\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central nervous system agents in medicinal chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1871524919666190719163632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871524919666190719163632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 12

摘要

神经调节调节中枢神经系统突触的关键功能,从神经回路发育到高阶认知过程,包括学习和记忆。这种广泛的作用范围通常是通过改变突触传递的强度(即突触可塑性)来介导的。突触强度的变化被广泛认为是学习信息的细胞表征。去甲肾上腺素是一种神经调节剂,在大脑对新奇事物或增强的兴奋做出反应时分泌。一旦释放,去甲肾上腺素激活代谢受体,启动细胞内信号级联,促进突触强度的持久变化和促进记忆储存。在这里,我们概述了哺乳动物神经回路中突触可塑性和记忆形成的去甲肾上腺素能调节,这在神经治疗界具有广泛的适用性。在这些过程的背景下,我们对去甲肾上腺素的理解的进展可能为改进多种脑部疾病的治疗策略提供基础,从创伤后应激障碍到阿尔茨海默病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noradrenergic Regulation of Hippocampus-Dependent Memory.
Neuromodulation regulates critical functions of CNS synapses, ranging from neural circuit development to high-order cognitive processes, including learning and memory. This broad scope of action is generally mediated through alterations of the strength of synaptic transmission (i.e. synaptic plasticity). Changes in synaptic strength are widely considered to be a cellular representation of learned information. Noradrenaline is a neuromodulator that is secreted throughout the brain in response to novelty or increased arousal. Once released, noradrenaline activates metabotropic receptors, initiating intracellular signaling cascades that promote enduring changes in synaptic strength and facilitate memory storage. Here, we provide an overview of noradrenergic modulation of synaptic plasticity and memory formation within mammalian neural circuits, which has broad applicability within the neurotherapeutics community. Advances in our understanding of noradrenaline in the context of these processes may provide a foundation for refining treatment strategies for multiple brain diseases, ranging from post-traumatic stress disorder to Alzheimer's Disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central nervous system agents in medicinal chemistry
Central nervous system agents in medicinal chemistry Psychology-Neuropsychology and Physiological Psychology
CiteScore
2.10
自引率
0.00%
发文量
21
期刊介绍: Central Nervous System Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new central nervous system agents. Containing a series of timely in-depth reviews written by leaders in the field covering a range of current topics, Central Nervous System Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in the field.
期刊最新文献
Evolving New Forms of Treatment A Review on Tau Targeting Biomimetics Nano Formulations: Novel Approach for Targeting Alzheimer's Diseases A Comprehensive Review of the Pharmacological Effects of Genus Ferula on Central Nervous System Disorders Intracerebroventricular Injection of MHY1485 Blocked the Beneficial Effect of Adiponectin on Aversive Memory in the STZ Model of Dementia. Tianeptine Affects the Improvement of Behavioral Defects, such as Schizophrenia, Caused by Maternal Immune Activation in the Mice Offspring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1