Jong-Min Kim, Jun-Seop Shin, Byoung-Hoon Min, Seong-Jun Kang, Il‐Hee Yoon, Hyunwoo Chung, Jiyeon Kim, E. Hwang, J. Ha, Chung-Gyu Park
{"title":"基于JAK3抑制剂的免疫抑制在食蟹猴异基因胰岛移植中的应用","authors":"Jong-Min Kim, Jun-Seop Shin, Byoung-Hoon Min, Seong-Jun Kang, Il‐Hee Yoon, Hyunwoo Chung, Jiyeon Kim, E. Hwang, J. Ha, Chung-Gyu Park","doi":"10.1080/19382014.2019.1650580","DOIUrl":null,"url":null,"abstract":"ABSTRACT Islet transplantation is efficacious to prevent severe hypoglycemia and glycemic liability of selected patients of type 1 diabetes. However, since calcineurin inhibitor (CNI) causes β-cell and nephrotoxicity, alternative drug(s) with similar potency and safety profile to CNI will be highly desirable. Here we tested whether JAK3 inhibitor, tofacitinib could be used instead of tacrolimus in CIT07 immunosuppression regimen in cynomolgus nonhuman primate (NHP) model. Five independent streptozotocin (STZ)-induced diabetic monkeys were transplanted with MHC-mismatched allogeneic islets and three animals were further re-transplanted upon insufficient glycemic control or early islet graft rejection. After islet transplantation, blood glucose levels were quickly stabilized and maximal islet graft survival as measured by serum C-peptide concentration was >330, 98, >134, 31, or 22 days, respectively, after transplantation (median survival day; 98 days). Cellular and humoral immune responses were efficiently suppressed by JAK3 inhibitor-based immunosuppression during the follow-up periods. Although intermittent increases of the genome copy number of cynomolgus cytomegalovirus (CMV) were detected by quantitative real-time PCR analyses, serious infections or posttransplant lymphoproliferative disease (PTLD) was not found in all animals. Taken together, we have shown that JAK3 inhibitor could be used in replacement of tacrolimus in a highly translatable NHP islet transplantation model and these results suggest that JAK3 inhibitor will be potentially incorporated in human allogeneic islet transplantation.","PeriodicalId":14671,"journal":{"name":"Islets","volume":"11 1","pages":"119 - 128"},"PeriodicalIF":1.9000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2019.1650580","citationCount":"11","resultStr":"{\"title\":\"JAK3 inhibitor-based immunosuppression in allogeneic islet transplantation in cynomolgus monkeys\",\"authors\":\"Jong-Min Kim, Jun-Seop Shin, Byoung-Hoon Min, Seong-Jun Kang, Il‐Hee Yoon, Hyunwoo Chung, Jiyeon Kim, E. Hwang, J. Ha, Chung-Gyu Park\",\"doi\":\"10.1080/19382014.2019.1650580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Islet transplantation is efficacious to prevent severe hypoglycemia and glycemic liability of selected patients of type 1 diabetes. However, since calcineurin inhibitor (CNI) causes β-cell and nephrotoxicity, alternative drug(s) with similar potency and safety profile to CNI will be highly desirable. Here we tested whether JAK3 inhibitor, tofacitinib could be used instead of tacrolimus in CIT07 immunosuppression regimen in cynomolgus nonhuman primate (NHP) model. Five independent streptozotocin (STZ)-induced diabetic monkeys were transplanted with MHC-mismatched allogeneic islets and three animals were further re-transplanted upon insufficient glycemic control or early islet graft rejection. After islet transplantation, blood glucose levels were quickly stabilized and maximal islet graft survival as measured by serum C-peptide concentration was >330, 98, >134, 31, or 22 days, respectively, after transplantation (median survival day; 98 days). Cellular and humoral immune responses were efficiently suppressed by JAK3 inhibitor-based immunosuppression during the follow-up periods. Although intermittent increases of the genome copy number of cynomolgus cytomegalovirus (CMV) were detected by quantitative real-time PCR analyses, serious infections or posttransplant lymphoproliferative disease (PTLD) was not found in all animals. Taken together, we have shown that JAK3 inhibitor could be used in replacement of tacrolimus in a highly translatable NHP islet transplantation model and these results suggest that JAK3 inhibitor will be potentially incorporated in human allogeneic islet transplantation.\",\"PeriodicalId\":14671,\"journal\":{\"name\":\"Islets\",\"volume\":\"11 1\",\"pages\":\"119 - 128\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19382014.2019.1650580\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Islets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19382014.2019.1650580\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Islets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19382014.2019.1650580","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
JAK3 inhibitor-based immunosuppression in allogeneic islet transplantation in cynomolgus monkeys
ABSTRACT Islet transplantation is efficacious to prevent severe hypoglycemia and glycemic liability of selected patients of type 1 diabetes. However, since calcineurin inhibitor (CNI) causes β-cell and nephrotoxicity, alternative drug(s) with similar potency and safety profile to CNI will be highly desirable. Here we tested whether JAK3 inhibitor, tofacitinib could be used instead of tacrolimus in CIT07 immunosuppression regimen in cynomolgus nonhuman primate (NHP) model. Five independent streptozotocin (STZ)-induced diabetic monkeys were transplanted with MHC-mismatched allogeneic islets and three animals were further re-transplanted upon insufficient glycemic control or early islet graft rejection. After islet transplantation, blood glucose levels were quickly stabilized and maximal islet graft survival as measured by serum C-peptide concentration was >330, 98, >134, 31, or 22 days, respectively, after transplantation (median survival day; 98 days). Cellular and humoral immune responses were efficiently suppressed by JAK3 inhibitor-based immunosuppression during the follow-up periods. Although intermittent increases of the genome copy number of cynomolgus cytomegalovirus (CMV) were detected by quantitative real-time PCR analyses, serious infections or posttransplant lymphoproliferative disease (PTLD) was not found in all animals. Taken together, we have shown that JAK3 inhibitor could be used in replacement of tacrolimus in a highly translatable NHP islet transplantation model and these results suggest that JAK3 inhibitor will be potentially incorporated in human allogeneic islet transplantation.
期刊介绍:
Islets is the first international, peer-reviewed research journal dedicated to islet biology. Islets publishes high-quality clinical and experimental research into the physiology and pathology of the islets of Langerhans. In addition to original research manuscripts, Islets is the leading source for cutting-edge Perspectives, Reviews and Commentaries.
Our goal is to foster communication and a rapid exchange of information through timely publication of important results using print as well as electronic formats.