肿胀和解剖位置对猪膀胱壁粘弹性行为的影响。

Tyler G. Tuttle, D. McClintock, S. Roccabianca
{"title":"肿胀和解剖位置对猪膀胱壁粘弹性行为的影响。","authors":"Tyler G. Tuttle, D. McClintock, S. Roccabianca","doi":"10.2139/ssrn.4326307","DOIUrl":null,"url":null,"abstract":"The ability of the urinary bladder to perform its physiological function depends largely on its mechanical characteristics. Understanding the mechanics of this tissue is crucial to the development of accurate models of not just this specific organ, but of the pelvic floor overall. In this study, we tested porcine bladder to identify variations in the tissue's viscoelastic characteristics associated with anatomical locations and swelling. We investigated this relationship using a series of stress-relaxation experiments as well as a modified Maxwell-Wiechert model to aid in the interpretation of the experimental data. Our results highlight that tissue located near the neck of the bladder presents significantly different viscoelastic characteristics than the body of the organ. This supports what was previously observed and is a valuable contribution to the understanding of the location-specific properties of the bladder. We also tested the effect of swelling, revealing that the bladder's viscoelastic behavior is mostly independent of solution osmolarity in hypoosmotic solutions, but the use of a hyperosmotic solution can significantly affect its behavior. This is significant, since several urinary tract pathologies can lead to chronic inflammation and disrupt the urothelial barrier causing increased urothelial permeability, thus subjecting the bladder wall to non-physiologic osmotic challenge.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"143 1","pages":"105926"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of swelling and anatomical location on the viscoelastic behavior of the porcine urinary bladder wall.\",\"authors\":\"Tyler G. Tuttle, D. McClintock, S. Roccabianca\",\"doi\":\"10.2139/ssrn.4326307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of the urinary bladder to perform its physiological function depends largely on its mechanical characteristics. Understanding the mechanics of this tissue is crucial to the development of accurate models of not just this specific organ, but of the pelvic floor overall. In this study, we tested porcine bladder to identify variations in the tissue's viscoelastic characteristics associated with anatomical locations and swelling. We investigated this relationship using a series of stress-relaxation experiments as well as a modified Maxwell-Wiechert model to aid in the interpretation of the experimental data. Our results highlight that tissue located near the neck of the bladder presents significantly different viscoelastic characteristics than the body of the organ. This supports what was previously observed and is a valuable contribution to the understanding of the location-specific properties of the bladder. We also tested the effect of swelling, revealing that the bladder's viscoelastic behavior is mostly independent of solution osmolarity in hypoosmotic solutions, but the use of a hyperosmotic solution can significantly affect its behavior. This is significant, since several urinary tract pathologies can lead to chronic inflammation and disrupt the urothelial barrier causing increased urothelial permeability, thus subjecting the bladder wall to non-physiologic osmotic challenge.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"143 1\",\"pages\":\"105926\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4326307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4326307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

膀胱执行其生理功能的能力在很大程度上取决于它的机械特性。了解这一组织的机制不仅对这一特定器官,而且对整个骨盆底的精确模型的发展至关重要。在这项研究中,我们测试了猪膀胱,以确定与解剖位置和肿胀相关的组织粘弹性特征的变化。我们使用一系列的应力松弛实验以及修正的Maxwell-Wiechert模型来研究这种关系,以帮助解释实验数据。我们的结果强调,位于膀胱颈部附近的组织呈现出明显不同于器官体的粘弹性特征。这支持了之前的观察结果,并对理解膀胱的位置特异性特性做出了有价值的贡献。我们还测试了肿胀的影响,揭示了膀胱的粘弹性行为在很大程度上与低渗溶液中的溶液渗透压无关,但使用高渗溶液可以显著影响其行为。这是很重要的,因为一些尿路病变可导致慢性炎症和破坏尿路上皮屏障,导致尿路上皮渗透性增加,从而使膀胱壁受到非生理性渗透的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of swelling and anatomical location on the viscoelastic behavior of the porcine urinary bladder wall.
The ability of the urinary bladder to perform its physiological function depends largely on its mechanical characteristics. Understanding the mechanics of this tissue is crucial to the development of accurate models of not just this specific organ, but of the pelvic floor overall. In this study, we tested porcine bladder to identify variations in the tissue's viscoelastic characteristics associated with anatomical locations and swelling. We investigated this relationship using a series of stress-relaxation experiments as well as a modified Maxwell-Wiechert model to aid in the interpretation of the experimental data. Our results highlight that tissue located near the neck of the bladder presents significantly different viscoelastic characteristics than the body of the organ. This supports what was previously observed and is a valuable contribution to the understanding of the location-specific properties of the bladder. We also tested the effect of swelling, revealing that the bladder's viscoelastic behavior is mostly independent of solution osmolarity in hypoosmotic solutions, but the use of a hyperosmotic solution can significantly affect its behavior. This is significant, since several urinary tract pathologies can lead to chronic inflammation and disrupt the urothelial barrier causing increased urothelial permeability, thus subjecting the bladder wall to non-physiologic osmotic challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair. TiNbSn alloy plates with low Young's modulus modulates interfragmentary movement and promote osteosynthesis in rat femur. Evaluation of flexural strength of additively manufactured resin materials compared to auto-polymerized provisional resin with and without hydrothermal aging. A Novel non-invasive optical framework for simultaneous analysis of contractility and calcium in single-cell cardiomyocytes. Influence of CAD/CAM diamond bur wear on the accuracy and surface roughness of dental ceramic restorations: A systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1