新代谢途径和微生物群落的进化

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2023-08-25 DOI:10.1016/j.coisb.2023.100472
Dan Kehila, Kimberly Tsz Ching Wong, Nobuhiko Tokuriki
{"title":"新代谢途径和微生物群落的进化","authors":"Dan Kehila,&nbsp;Kimberly Tsz Ching Wong,&nbsp;Nobuhiko Tokuriki","doi":"10.1016/j.coisb.2023.100472","DOIUrl":null,"url":null,"abstract":"<div><p>The evolution of metabolic pathways in microbes is traditionally envisioned to take place within a single organism. The diverse repertoire of enzymes in the microbial community points to another exciting possibility: namely, that new metabolic pathways may evolve in a community setting, where pathway steps are distributed across several strains. The readiness with which microbes form stable relationships to collectively degrade manmade ‘xenobiotic’ pollutants, as evidenced from natural and laboratory-enriched consortia, provides valuable insights into the evolution of enzymes and pathways. Nonetheless, many open questions remain to be addressed. In this review, we consider the key determinants of pathway evolution in microbial communities, drawing from principles of social evolutionary theory in microbes, and also exploring the role of diffusion and horizontal gene transfer.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of new metabolic pathways and microbial communities\",\"authors\":\"Dan Kehila,&nbsp;Kimberly Tsz Ching Wong,&nbsp;Nobuhiko Tokuriki\",\"doi\":\"10.1016/j.coisb.2023.100472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The evolution of metabolic pathways in microbes is traditionally envisioned to take place within a single organism. The diverse repertoire of enzymes in the microbial community points to another exciting possibility: namely, that new metabolic pathways may evolve in a community setting, where pathway steps are distributed across several strains. The readiness with which microbes form stable relationships to collectively degrade manmade ‘xenobiotic’ pollutants, as evidenced from natural and laboratory-enriched consortia, provides valuable insights into the evolution of enzymes and pathways. Nonetheless, many open questions remain to be addressed. In this review, we consider the key determinants of pathway evolution in microbial communities, drawing from principles of social evolutionary theory in microbes, and also exploring the role of diffusion and horizontal gene transfer.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245231002300029X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245231002300029X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统上,微生物代谢途径的进化被认为发生在一个生物体内。微生物群落中酶的多样性指向了另一种令人兴奋的可能性:即新的代谢途径可能在群落环境中进化,其中途径步骤分布在几个菌株中。从天然和实验室富集的群落中可以证明,微生物能够形成稳定的关系,共同降解人造的“异生”污染物,这为酶和途径的进化提供了宝贵的见解。尽管如此,仍有许多悬而未决的问题有待解决。在这篇综述中,我们从微生物的社会进化理论原理出发,考虑了微生物群落中途径进化的关键决定因素,并探索了扩散和水平基因转移的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of new metabolic pathways and microbial communities

The evolution of metabolic pathways in microbes is traditionally envisioned to take place within a single organism. The diverse repertoire of enzymes in the microbial community points to another exciting possibility: namely, that new metabolic pathways may evolve in a community setting, where pathway steps are distributed across several strains. The readiness with which microbes form stable relationships to collectively degrade manmade ‘xenobiotic’ pollutants, as evidenced from natural and laboratory-enriched consortia, provides valuable insights into the evolution of enzymes and pathways. Nonetheless, many open questions remain to be addressed. In this review, we consider the key determinants of pathway evolution in microbial communities, drawing from principles of social evolutionary theory in microbes, and also exploring the role of diffusion and horizontal gene transfer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1