使用卷积神经网络(CNN)实现OCR:综述

Ahmed Alkaddo, Dujan Albaqal
{"title":"使用卷积神经网络(CNN)实现OCR:综述","authors":"Ahmed Alkaddo, Dujan Albaqal","doi":"10.33899/edusj.2022.133711.1236","DOIUrl":null,"url":null,"abstract":"Recently, character recognition and deep learning have caught the attention of many researchers. Optical Character Recognition (OCR) usually takes an image of the character as input and generates the identical character as output. The important role that OCR does is to transform printed materials into digital text files. Convolutional Neural Network (CNN) is an influential model that is generous with bright results in optical character recognition (OCR). The state-of-the-art performance which exists in deep neural networks is usually used to handle frequently recognition and classification problems. Many applications are using it, for instance, robotics, traffic monitoring, articles digitization, etc. CNN is designed to adaptively and automatically learn features by using many kinds of layers (convolution layers, pooling layers, and fully connected layers). In this paper we will go through the advantages and recent usage of CNN in OCR and why it’s important to use it in handwritten and printed text recognition and what subjects we can use this technique for. Researchers are progressively using CNN for the machine-printed characters and recognition of handwritten, that is because CNN architectures are suitable for recognition tasks by inputting some images.","PeriodicalId":33491,"journal":{"name":"mjl@ ltrby@ wl`lm","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of OCR using Convolutional Neural Network (CNN): A Survey\",\"authors\":\"Ahmed Alkaddo, Dujan Albaqal\",\"doi\":\"10.33899/edusj.2022.133711.1236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, character recognition and deep learning have caught the attention of many researchers. Optical Character Recognition (OCR) usually takes an image of the character as input and generates the identical character as output. The important role that OCR does is to transform printed materials into digital text files. Convolutional Neural Network (CNN) is an influential model that is generous with bright results in optical character recognition (OCR). The state-of-the-art performance which exists in deep neural networks is usually used to handle frequently recognition and classification problems. Many applications are using it, for instance, robotics, traffic monitoring, articles digitization, etc. CNN is designed to adaptively and automatically learn features by using many kinds of layers (convolution layers, pooling layers, and fully connected layers). In this paper we will go through the advantages and recent usage of CNN in OCR and why it’s important to use it in handwritten and printed text recognition and what subjects we can use this technique for. Researchers are progressively using CNN for the machine-printed characters and recognition of handwritten, that is because CNN architectures are suitable for recognition tasks by inputting some images.\",\"PeriodicalId\":33491,\"journal\":{\"name\":\"mjl@ ltrby@ wl`lm\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mjl@ ltrby@ wl`lm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33899/edusj.2022.133711.1236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mjl@ ltrby@ wl`lm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/edusj.2022.133711.1236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,字符识别和深度学习引起了许多研究人员的注意。光学字符识别(OCR)通常将字符的图像作为输入,并生成相同的字符作为输出。OCR的重要作用是将打印材料转换为数字文本文件。卷积神经网络(CNN)是一种在光学字符识别(OCR)中具有良好效果的有影响力的模型。深度神经网络中存在的最先进的性能通常用于处理频繁的识别和分类问题。许多应用程序都在使用它,例如机器人、交通监控、文章数字化等。CNN被设计为通过使用多种层(卷积层、池化层和完全连接层)自适应地自动学习特征。在本文中,我们将介绍CNN在OCR中的优势和最近的使用,以及为什么在手写和打印文本识别中使用它很重要,以及我们可以将该技术用于哪些主题。研究人员正在逐步将CNN用于机器打印的字符和手写体的识别,这是因为CNN架构适合通过输入一些图像来执行识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of OCR using Convolutional Neural Network (CNN): A Survey
Recently, character recognition and deep learning have caught the attention of many researchers. Optical Character Recognition (OCR) usually takes an image of the character as input and generates the identical character as output. The important role that OCR does is to transform printed materials into digital text files. Convolutional Neural Network (CNN) is an influential model that is generous with bright results in optical character recognition (OCR). The state-of-the-art performance which exists in deep neural networks is usually used to handle frequently recognition and classification problems. Many applications are using it, for instance, robotics, traffic monitoring, articles digitization, etc. CNN is designed to adaptively and automatically learn features by using many kinds of layers (convolution layers, pooling layers, and fully connected layers). In this paper we will go through the advantages and recent usage of CNN in OCR and why it’s important to use it in handwritten and printed text recognition and what subjects we can use this technique for. Researchers are progressively using CNN for the machine-printed characters and recognition of handwritten, that is because CNN architectures are suitable for recognition tasks by inputting some images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
38
审稿时长
24 weeks
期刊最新文献
Numerical Solution of the Fredholm Integro-Differential Equations Using High-Order Compact Finite Difference Method Implementing Runge-Kutta Method of Sixth-Order for Numerical Solution of Fuzzy Differential Equations Determining the fundamental conditions of the soliton solution for the new nonlocal discrete Separation and identification of a number of alkaloids and some phenols from two species of plants of the genus Euphorbia grown in Nineveh Governorate. Diagnosing Soft Tissue Tumors using Machine Learning Techniques: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1