Ravichandran Manisekaran, Edgar Jiménez-Cervantes Amieva, Carlos M. Valdemar-Aguilar, Luz M. López-Marín
{"title":"聚阳离子金纳米颗粒的新合成及其在微生物光学传感方面的潜力","authors":"Ravichandran Manisekaran, Edgar Jiménez-Cervantes Amieva, Carlos M. Valdemar-Aguilar, Luz M. López-Marín","doi":"10.1007/s13404-020-00283-0","DOIUrl":null,"url":null,"abstract":"<p>The aim of this research was to describe a facile protocol to obtain biocompatible gold nanoparticles (AuNPs) suitable for microbial optical sensing. For this purpose, polycationic poly-L-lysine (PLL) was employed as both reducing and stabilizing agent in order to obtain an optically active microbial nanotag based on the electrostatic interaction with negatively charged cell envelopes. A one-pot procedure was developed to produce homogeneous, positively charged AuNPs. The as-synthesized particles, named PLL@AuNPs, exhibited maximal surface plasmon resonance (SPR) at 532 nm, a FCC crystalline nature, and sizes ranging from 20 to 25 nm, according to spectroscopy, X-ray diffractometry (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) analyses. The reduction of gold ions by PLL was featured by Fourier-transform infrared (FTIR) absorption bands of various functional groups. Zeta potential analysis confirmed the high cationic feature with a value of + 57 mV. The applicability of the particles to tag bacterial cell surfaces was exemplified by their adherence to <i>Escherichia coli</i>, a bacterial species commonly used to monitor fecal pollution in water sources. Finally, the potential of this tagging approach for microbial sensing through surface-enhanced Raman scattering (SERS) was explored.</p>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":"53 3-4","pages":"135 - 140"},"PeriodicalIF":2.1000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-020-00283-0","citationCount":"6","resultStr":"{\"title\":\"Novel synthesis of polycationic gold nanoparticles and their potential for microbial optical sensing\",\"authors\":\"Ravichandran Manisekaran, Edgar Jiménez-Cervantes Amieva, Carlos M. Valdemar-Aguilar, Luz M. López-Marín\",\"doi\":\"10.1007/s13404-020-00283-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this research was to describe a facile protocol to obtain biocompatible gold nanoparticles (AuNPs) suitable for microbial optical sensing. For this purpose, polycationic poly-L-lysine (PLL) was employed as both reducing and stabilizing agent in order to obtain an optically active microbial nanotag based on the electrostatic interaction with negatively charged cell envelopes. A one-pot procedure was developed to produce homogeneous, positively charged AuNPs. The as-synthesized particles, named PLL@AuNPs, exhibited maximal surface plasmon resonance (SPR) at 532 nm, a FCC crystalline nature, and sizes ranging from 20 to 25 nm, according to spectroscopy, X-ray diffractometry (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) analyses. The reduction of gold ions by PLL was featured by Fourier-transform infrared (FTIR) absorption bands of various functional groups. Zeta potential analysis confirmed the high cationic feature with a value of + 57 mV. The applicability of the particles to tag bacterial cell surfaces was exemplified by their adherence to <i>Escherichia coli</i>, a bacterial species commonly used to monitor fecal pollution in water sources. Finally, the potential of this tagging approach for microbial sensing through surface-enhanced Raman scattering (SERS) was explored.</p>\",\"PeriodicalId\":581,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":\"53 3-4\",\"pages\":\"135 - 140\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13404-020-00283-0\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-020-00283-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-020-00283-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Novel synthesis of polycationic gold nanoparticles and their potential for microbial optical sensing
The aim of this research was to describe a facile protocol to obtain biocompatible gold nanoparticles (AuNPs) suitable for microbial optical sensing. For this purpose, polycationic poly-L-lysine (PLL) was employed as both reducing and stabilizing agent in order to obtain an optically active microbial nanotag based on the electrostatic interaction with negatively charged cell envelopes. A one-pot procedure was developed to produce homogeneous, positively charged AuNPs. The as-synthesized particles, named PLL@AuNPs, exhibited maximal surface plasmon resonance (SPR) at 532 nm, a FCC crystalline nature, and sizes ranging from 20 to 25 nm, according to spectroscopy, X-ray diffractometry (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) analyses. The reduction of gold ions by PLL was featured by Fourier-transform infrared (FTIR) absorption bands of various functional groups. Zeta potential analysis confirmed the high cationic feature with a value of + 57 mV. The applicability of the particles to tag bacterial cell surfaces was exemplified by their adherence to Escherichia coli, a bacterial species commonly used to monitor fecal pollution in water sources. Finally, the potential of this tagging approach for microbial sensing through surface-enhanced Raman scattering (SERS) was explored.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.