期望最优性问题的PDE方法

M. Hasanov
{"title":"期望最优性问题的PDE方法","authors":"M. Hasanov","doi":"10.28924/2291-8639-21-2023-57","DOIUrl":null,"url":null,"abstract":"Let (X, Z) be a bivariate random vector. A predictor of X based on Z is just a Borel function g(Z). The problem of \"least squares prediction\" of X given the observation Z is to find the global minimum point of the functional E[(X − g(Z))2] with respect to all random variables g(Z), where g is a Borel function. It is well known that the solution of this problem is the conditional expectation E(X|Z). We also know that, if for a nonnegative smooth function F: R×R → R, arg ming(Z)E[F(X, g(Z))] = E[X|Z], for all X and Z, then F(x, y) is a Bregmann loss function. It is also of interest, for a fixed ϕ to find F (x, y), satisfying, arg ming(Z)E[F(X, g(Z))] = ϕ(E[X|Z]), for all X and Z. In more general setting, a stronger problem is to find F (x, y) satisfying arg miny∈RE[F (X, y)] = ϕ(E[X]), ∀X. We study this problem and develop a partial differential equation (PDE) approach to solution of these problems.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PDE Approach to the Problems of Optimality of Expectations\",\"authors\":\"M. Hasanov\",\"doi\":\"10.28924/2291-8639-21-2023-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (X, Z) be a bivariate random vector. A predictor of X based on Z is just a Borel function g(Z). The problem of \\\"least squares prediction\\\" of X given the observation Z is to find the global minimum point of the functional E[(X − g(Z))2] with respect to all random variables g(Z), where g is a Borel function. It is well known that the solution of this problem is the conditional expectation E(X|Z). We also know that, if for a nonnegative smooth function F: R×R → R, arg ming(Z)E[F(X, g(Z))] = E[X|Z], for all X and Z, then F(x, y) is a Bregmann loss function. It is also of interest, for a fixed ϕ to find F (x, y), satisfying, arg ming(Z)E[F(X, g(Z))] = ϕ(E[X|Z]), for all X and Z. In more general setting, a stronger problem is to find F (x, y) satisfying arg miny∈RE[F (X, y)] = ϕ(E[X]), ∀X. We study this problem and develop a partial differential equation (PDE) approach to solution of these problems.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设(X,Z)为二元随机向量。基于Z的X的预测器只是Borel函数g(Z)。给定观测值Z的X的“最小二乘预测”问题是找到函数E[(X−g(Z))2]相对于所有随机变量g(Z)的全局最小点,其中g是Borel函数。众所周知,这个问题的解是条件期望E(X|Z)。我们还知道,如果对于非负光滑函数F:R×R→ R、 arg-ming(Z)E[F(X,g(Z))]=E[X|Z],对于所有X和Z,则F(X,y)是Bregmann损失函数。同样令人感兴趣的是,对于固定的Γ,找到F(x,y),对于所有x和Z,满足arg ming(Z)E[F(x,g(Z))]=Γ(E[x]Z])。我们研究了这个问题,并发展了一种偏微分方程(PDE)方法来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A PDE Approach to the Problems of Optimality of Expectations
Let (X, Z) be a bivariate random vector. A predictor of X based on Z is just a Borel function g(Z). The problem of "least squares prediction" of X given the observation Z is to find the global minimum point of the functional E[(X − g(Z))2] with respect to all random variables g(Z), where g is a Borel function. It is well known that the solution of this problem is the conditional expectation E(X|Z). We also know that, if for a nonnegative smooth function F: R×R → R, arg ming(Z)E[F(X, g(Z))] = E[X|Z], for all X and Z, then F(x, y) is a Bregmann loss function. It is also of interest, for a fixed ϕ to find F (x, y), satisfying, arg ming(Z)E[F(X, g(Z))] = ϕ(E[X|Z]), for all X and Z. In more general setting, a stronger problem is to find F (x, y) satisfying arg miny∈RE[F (X, y)] = ϕ(E[X]), ∀X. We study this problem and develop a partial differential equation (PDE) approach to solution of these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
期刊最新文献
Effects of Rotation and Magnetic Field on Rayliegh Benard Convection Applications of Bipolar Fuzzy Almost Ideals in Semigroups New Approach to Solving Fuzzy Multiobjective Linear Fractional Optimization Problems Weakly p(Λ, p)-Open Functions and Weakly p(Λ, p)-Closed Functions Instabilities and Stabilities of Additive Functional Equation in Paranormed Spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1