GARCH‐Itô模型的期权数据波动性分析

Pub Date : 2023-01-10 DOI:10.1002/cjs.11746
Huiling Yuan, Yong Zhou, Zhiyuan Zhang, Xiangyu Cui
{"title":"GARCH‐Itô模型的期权数据波动性分析","authors":"Huiling Yuan,&nbsp;Yong Zhou,&nbsp;Zhiyuan Zhang,&nbsp;Xiangyu Cui","doi":"10.1002/cjs.11746","DOIUrl":null,"url":null,"abstract":"<p>Low-frequency historical data, high-frequency historical data, and option data are three primary sources that can be used to forecast an underlying security's volatility. In this article, we propose an explicit model integrating the three information sources. Instead of directly using option price data, we extract option-implied volatility from option data and estimate its dynamics. We provide joint quasimaximum likelihood estimators for the parameters and establish their asymptotic properties. Real data examples demonstrate that the proposed model has better out-of-sample volatility forecasting performance than other popular volatility models.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatility analysis for the GARCH-Itô model with option data\",\"authors\":\"Huiling Yuan,&nbsp;Yong Zhou,&nbsp;Zhiyuan Zhang,&nbsp;Xiangyu Cui\",\"doi\":\"10.1002/cjs.11746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-frequency historical data, high-frequency historical data, and option data are three primary sources that can be used to forecast an underlying security's volatility. In this article, we propose an explicit model integrating the three information sources. Instead of directly using option price data, we extract option-implied volatility from option data and estimate its dynamics. We provide joint quasimaximum likelihood estimators for the parameters and establish their asymptotic properties. Real data examples demonstrate that the proposed model has better out-of-sample volatility forecasting performance than other popular volatility models.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低频历史数据、高频历史数据和期权数据是可以用来预测标的证券波动率的三个主要来源。在本文中,我们提出了一个整合这三种信息来源的明确模型。我们不直接使用期权价格数据,而是从期权数据中提取期权隐含波动率并估计其动态变化。我们提供了参数的联合准极大似然估计值,并建立了它们的渐近特性。实际数据实例表明,与其他流行的波动率模型相比,所提出的模型具有更好的样本外波动率预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Volatility analysis for the GARCH-Itô model with option data

Low-frequency historical data, high-frequency historical data, and option data are three primary sources that can be used to forecast an underlying security's volatility. In this article, we propose an explicit model integrating the three information sources. Instead of directly using option price data, we extract option-implied volatility from option data and estimate its dynamics. We provide joint quasimaximum likelihood estimators for the parameters and establish their asymptotic properties. Real data examples demonstrate that the proposed model has better out-of-sample volatility forecasting performance than other popular volatility models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1