Wanshang Xia, Dezhi Han, Dun Li, Zhongdai Wu, Bing Han, Junxiang Wang
{"title":"用于害虫分类的多个CNN与改进的视觉变换器模型的集成学习","authors":"Wanshang Xia, Dezhi Han, Dun Li, Zhongdai Wu, Bing Han, Junxiang Wang","doi":"10.1111/aab.12804","DOIUrl":null,"url":null,"abstract":"<p>Pests are the main threats to crop growth, and the precision classification of pests is conducive to formulating effective prevention and governance strategies. In response to the problems of low efficiency and inadaptability to the large-scale environment of existing pest classification methods, this paper proposes a new pest classification method based on a convolutional neural network (CNN) and an improved Vision Transformer model. First, the MMAlNet is designed to extract the characteristics of the identification object from different scales and finer granularity. Then, a classification model called DenseNet Vision Transformer (DNVT) combining a CNN and an improved vision transformer model is proposed. The proposed DNVT captures both long distance dependencies and local characteristic modelling capabilities, which can effectively improve pest classification accuracy. Finally, the ensemble learning algorithm is used to learn MMAlNet and DNVT classification forecasts for soft voting, further enhancing the classification accuracy of pests. The simulation experiment results on the D0 and IP102 datasets show that the proposed method attained a maximum classification of 99.89 and 74.20%, respectively, which is better than other state-of-the-art methods and has a high practical application value.</p>","PeriodicalId":7977,"journal":{"name":"Annals of Applied Biology","volume":"182 2","pages":"144-158"},"PeriodicalIF":2.2000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An ensemble learning integration of multiple CNN with improved vision transformer models for pest classification\",\"authors\":\"Wanshang Xia, Dezhi Han, Dun Li, Zhongdai Wu, Bing Han, Junxiang Wang\",\"doi\":\"10.1111/aab.12804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pests are the main threats to crop growth, and the precision classification of pests is conducive to formulating effective prevention and governance strategies. In response to the problems of low efficiency and inadaptability to the large-scale environment of existing pest classification methods, this paper proposes a new pest classification method based on a convolutional neural network (CNN) and an improved Vision Transformer model. First, the MMAlNet is designed to extract the characteristics of the identification object from different scales and finer granularity. Then, a classification model called DenseNet Vision Transformer (DNVT) combining a CNN and an improved vision transformer model is proposed. The proposed DNVT captures both long distance dependencies and local characteristic modelling capabilities, which can effectively improve pest classification accuracy. Finally, the ensemble learning algorithm is used to learn MMAlNet and DNVT classification forecasts for soft voting, further enhancing the classification accuracy of pests. The simulation experiment results on the D0 and IP102 datasets show that the proposed method attained a maximum classification of 99.89 and 74.20%, respectively, which is better than other state-of-the-art methods and has a high practical application value.</p>\",\"PeriodicalId\":7977,\"journal\":{\"name\":\"Annals of Applied Biology\",\"volume\":\"182 2\",\"pages\":\"144-158\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aab.12804\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aab.12804","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
An ensemble learning integration of multiple CNN with improved vision transformer models for pest classification
Pests are the main threats to crop growth, and the precision classification of pests is conducive to formulating effective prevention and governance strategies. In response to the problems of low efficiency and inadaptability to the large-scale environment of existing pest classification methods, this paper proposes a new pest classification method based on a convolutional neural network (CNN) and an improved Vision Transformer model. First, the MMAlNet is designed to extract the characteristics of the identification object from different scales and finer granularity. Then, a classification model called DenseNet Vision Transformer (DNVT) combining a CNN and an improved vision transformer model is proposed. The proposed DNVT captures both long distance dependencies and local characteristic modelling capabilities, which can effectively improve pest classification accuracy. Finally, the ensemble learning algorithm is used to learn MMAlNet and DNVT classification forecasts for soft voting, further enhancing the classification accuracy of pests. The simulation experiment results on the D0 and IP102 datasets show that the proposed method attained a maximum classification of 99.89 and 74.20%, respectively, which is better than other state-of-the-art methods and has a high practical application value.
期刊介绍:
Annals of Applied Biology is an international journal sponsored by the Association of Applied Biologists. The journal publishes original research papers on all aspects of applied research on crop production, crop protection and the cropping ecosystem. The journal is published both online and in six printed issues per year.
Annals papers must contribute substantially to the advancement of knowledge and may, among others, encompass the scientific disciplines of:
Agronomy
Agrometeorology
Agrienvironmental sciences
Applied genomics
Applied metabolomics
Applied proteomics
Biodiversity
Biological control
Climate change
Crop ecology
Entomology
Genetic manipulation
Molecular biology
Mycology
Nematology
Pests
Plant pathology
Plant breeding & genetics
Plant physiology
Post harvest biology
Soil science
Statistics
Virology
Weed biology
Annals also welcomes reviews of interest in these subject areas. Reviews should be critical surveys of the field and offer new insights. All papers are subject to peer review. Papers must usually contribute substantially to the advancement of knowledge in applied biology but short papers discussing techniques or substantiated results, and reviews of current knowledge of interest to applied biologists will be considered for publication. Papers or reviews must not be offered to any other journal for prior or simultaneous publication and normally average seven printed pages.