Nan Chen , Hao-Xiang Gao , Qiang He , Zhi-Long Yu , Wei-Cai Zeng
{"title":"酚类化合物结构复杂性对其与玉米淀粉结合的影响","authors":"Nan Chen , Hao-Xiang Gao , Qiang He , Zhi-Long Yu , Wei-Cai Zeng","doi":"10.1016/j.foostr.2022.100286","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of structure complexity of phenolic compounds<span><span> on their binding with maize starch was investigated. The computational results (including molecular electrostatic potential and molecular dynamics simulation) indicated that protocatechuic acid, </span>ellagic acid, naringin and tannic acid could bind with maize starch by hydrogen bonds, while the number and distribution of hydroxyl groups in phenolic compounds significantly affected the binding affinity and combination conformation. Furthermore, the microstructure, particle size, crystallinity and thermal stability of maize starch were both changed obviously through the binding with phenolic compounds, and the binding effect was more obvious induced by phenolic compounds with larger molecular size and bigger steric hindrance. All present results suggested that the amount of hydroxyl groups, molecular size and steric hindrance of phenolic compounds could affect their binding effects on starch molecules, so as to modify the structure and properties of maize starch in different degrees.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"33 ","pages":"Article 100286"},"PeriodicalIF":5.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Influence of structure complexity of phenolic compounds on their binding with maize starch\",\"authors\":\"Nan Chen , Hao-Xiang Gao , Qiang He , Zhi-Long Yu , Wei-Cai Zeng\",\"doi\":\"10.1016/j.foostr.2022.100286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The influence of structure complexity of phenolic compounds<span><span> on their binding with maize starch was investigated. The computational results (including molecular electrostatic potential and molecular dynamics simulation) indicated that protocatechuic acid, </span>ellagic acid, naringin and tannic acid could bind with maize starch by hydrogen bonds, while the number and distribution of hydroxyl groups in phenolic compounds significantly affected the binding affinity and combination conformation. Furthermore, the microstructure, particle size, crystallinity and thermal stability of maize starch were both changed obviously through the binding with phenolic compounds, and the binding effect was more obvious induced by phenolic compounds with larger molecular size and bigger steric hindrance. All present results suggested that the amount of hydroxyl groups, molecular size and steric hindrance of phenolic compounds could affect their binding effects on starch molecules, so as to modify the structure and properties of maize starch in different degrees.</span></p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"33 \",\"pages\":\"Article 100286\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329122000351\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329122000351","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Influence of structure complexity of phenolic compounds on their binding with maize starch
The influence of structure complexity of phenolic compounds on their binding with maize starch was investigated. The computational results (including molecular electrostatic potential and molecular dynamics simulation) indicated that protocatechuic acid, ellagic acid, naringin and tannic acid could bind with maize starch by hydrogen bonds, while the number and distribution of hydroxyl groups in phenolic compounds significantly affected the binding affinity and combination conformation. Furthermore, the microstructure, particle size, crystallinity and thermal stability of maize starch were both changed obviously through the binding with phenolic compounds, and the binding effect was more obvious induced by phenolic compounds with larger molecular size and bigger steric hindrance. All present results suggested that the amount of hydroxyl groups, molecular size and steric hindrance of phenolic compounds could affect their binding effects on starch molecules, so as to modify the structure and properties of maize starch in different degrees.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.