脑电信号对闪烁视觉刺激反应的脑噪声估计

Alexander N. Pisarchik , Parth Chholak , Alexander E. Hramov
{"title":"脑电信号对闪烁视觉刺激反应的脑噪声估计","authors":"Alexander N. Pisarchik ,&nbsp;Parth Chholak ,&nbsp;Alexander E. Hramov","doi":"10.1016/j.csfx.2019.100005","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the brain as an autonomous stochastic system, whose fundamental frequencies are locked to an external periodic stimulation. Taking into account that phase synchronization between brain response and stimulating signal is affected by noise, we propose a novel method for experimental estimation of brain noise by analyzing neurophysiological activity during perception of flickering visual stimuli. Using magnetoencephalography (MEG) we evaluate steady-state visual evoked fields (SSVEF) in the occipital cortex when subjects observe a square image with modulated brightness. Then, we calculate the probability distribution of the SSVEF phase fluctuations and compute its kurtosis. The higher kurtosis, the better the phase synchronization. Since kurtosis characterizes the distribution’s sharpness, we associate inverse kurtosis with brain noise which broadens this distribution. We found that the majority of subjects exhibited leptokurtic kurtosis (<em>K</em> &gt; 3) with tails approaching zero more slowly than Gaussian. The results of this work may be useful for the development of efficient and accurate brain-computer interfaces to be adapted to individual features of every subject in accordance with his/her brain noise.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"1 ","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2019.100005","citationCount":"21","resultStr":"{\"title\":\"Brain noise estimation from MEG response to flickering visual stimulation\",\"authors\":\"Alexander N. Pisarchik ,&nbsp;Parth Chholak ,&nbsp;Alexander E. Hramov\",\"doi\":\"10.1016/j.csfx.2019.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the brain as an autonomous stochastic system, whose fundamental frequencies are locked to an external periodic stimulation. Taking into account that phase synchronization between brain response and stimulating signal is affected by noise, we propose a novel method for experimental estimation of brain noise by analyzing neurophysiological activity during perception of flickering visual stimuli. Using magnetoencephalography (MEG) we evaluate steady-state visual evoked fields (SSVEF) in the occipital cortex when subjects observe a square image with modulated brightness. Then, we calculate the probability distribution of the SSVEF phase fluctuations and compute its kurtosis. The higher kurtosis, the better the phase synchronization. Since kurtosis characterizes the distribution’s sharpness, we associate inverse kurtosis with brain noise which broadens this distribution. We found that the majority of subjects exhibited leptokurtic kurtosis (<em>K</em> &gt; 3) with tails approaching zero more slowly than Gaussian. The results of this work may be useful for the development of efficient and accurate brain-computer interfaces to be adapted to individual features of every subject in accordance with his/her brain noise.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"1 \",\"pages\":\"Article 100005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2019.100005\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054419300041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054419300041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 21

摘要

我们认为大脑是一个自主的随机系统,其基频被锁定在外部周期性刺激上。考虑到噪声会影响大脑反应与刺激信号的相位同步,提出了一种通过分析闪烁视觉刺激感知过程中的神经生理活动来实验估计大脑噪声的新方法。利用脑磁图(MEG),我们评估了受试者在观察亮度调制的方形图像时枕叶皮层的稳态视觉诱发场(SSVEF)。然后,我们计算了SSVEF相位波动的概率分布,并计算了其峰度。峰度越高,相位同步越好。由于峰度表征了分布的锐度,我们将逆峰度与大脑噪声联系起来,使分布变宽。我们发现,大多数受试者表现出细峰峰度(K > 3),尾部接近零的速度比高斯分布慢。这项工作的结果可能有助于开发有效和准确的脑机接口,以适应每个受试者根据他/她的大脑噪声的个体特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain noise estimation from MEG response to flickering visual stimulation

We consider the brain as an autonomous stochastic system, whose fundamental frequencies are locked to an external periodic stimulation. Taking into account that phase synchronization between brain response and stimulating signal is affected by noise, we propose a novel method for experimental estimation of brain noise by analyzing neurophysiological activity during perception of flickering visual stimuli. Using magnetoencephalography (MEG) we evaluate steady-state visual evoked fields (SSVEF) in the occipital cortex when subjects observe a square image with modulated brightness. Then, we calculate the probability distribution of the SSVEF phase fluctuations and compute its kurtosis. The higher kurtosis, the better the phase synchronization. Since kurtosis characterizes the distribution’s sharpness, we associate inverse kurtosis with brain noise which broadens this distribution. We found that the majority of subjects exhibited leptokurtic kurtosis (K > 3) with tails approaching zero more slowly than Gaussian. The results of this work may be useful for the development of efficient and accurate brain-computer interfaces to be adapted to individual features of every subject in accordance with his/her brain noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
期刊最新文献
Effects of synapse location, delay and background stochastic activity on synchronising hippocampal CA1 neurons Solitary and traveling wave solutions to nematic liquid crystal equations using Jacobi elliptic functions A high-order rogue wave generated by collision in three-component Bose–Einstein condensates Recurrence formula for some higher order evolution equations Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1