基于预测模型的双车道超车辅助系统研究

S. A. Fadhil, A. Al-Bayatti
{"title":"基于预测模型的双车道超车辅助系统研究","authors":"S. A. Fadhil, A. Al-Bayatti","doi":"10.3311/pptr.19218","DOIUrl":null,"url":null,"abstract":"The complexity of an overtaking maneuver on two-lane roads merits a thorough method for developing an assistance system to prevent accidents, thus reducing the number of fatalities and the associated economic costs. This research aims to introduce a new Driver Overtaking Assistance System (DOAS). This system is based on the proactive prediction of the possibility of overtaking any preceding vehicle(s) both accurately and safely. To provide a comprehensive system, different factors related to the driver, the vehicle, the road, and the environment which have an impact on the maneuver have been taken into consideration. In addition to considering the main overtaking strategies including accelerative, flying, piggybacking, and the 2+. The proposed system is a vehicle-based safety system based on the collection of contextual information from the driving vicinity through Hello beacon messages and a set of sensors that are used as part of the reasoning process of the context-aware architecture to safely initiate the overtaking maneuver. A classification model was implemented for both the Artificial Neural Network (ANN) and Support Vector Machine (SVM) learning algorithms. A vehicle driving simulator STISIM Drive® was used to conduct driving experiments for 100 participants of different ages, gender, and levels of mental awareness. The results obtained from the DOAS show high accuracy in aiding a safe overtaking maneuver. The classification model shows promising results in the predictions, through perfect accuracy and a very low level of outcome errors.","PeriodicalId":39536,"journal":{"name":"Periodica Polytechnica Transportation Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Developing a New Driver Assistance System for Overtaking on Two-Lane Roads using Predictive Models\",\"authors\":\"S. A. Fadhil, A. Al-Bayatti\",\"doi\":\"10.3311/pptr.19218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of an overtaking maneuver on two-lane roads merits a thorough method for developing an assistance system to prevent accidents, thus reducing the number of fatalities and the associated economic costs. This research aims to introduce a new Driver Overtaking Assistance System (DOAS). This system is based on the proactive prediction of the possibility of overtaking any preceding vehicle(s) both accurately and safely. To provide a comprehensive system, different factors related to the driver, the vehicle, the road, and the environment which have an impact on the maneuver have been taken into consideration. In addition to considering the main overtaking strategies including accelerative, flying, piggybacking, and the 2+. The proposed system is a vehicle-based safety system based on the collection of contextual information from the driving vicinity through Hello beacon messages and a set of sensors that are used as part of the reasoning process of the context-aware architecture to safely initiate the overtaking maneuver. A classification model was implemented for both the Artificial Neural Network (ANN) and Support Vector Machine (SVM) learning algorithms. A vehicle driving simulator STISIM Drive® was used to conduct driving experiments for 100 participants of different ages, gender, and levels of mental awareness. The results obtained from the DOAS show high accuracy in aiding a safe overtaking maneuver. The classification model shows promising results in the predictions, through perfect accuracy and a very low level of outcome errors.\",\"PeriodicalId\":39536,\"journal\":{\"name\":\"Periodica Polytechnica Transportation Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica Transportation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/pptr.19218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/pptr.19218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

双车道道路上超车操作的复杂性值得采用一种彻底的方法来开发辅助系统以防止事故发生,从而减少死亡人数和相关的经济成本。本研究旨在介绍一种新型的驾驶员超车辅助系统(DOAS)。该系统基于对准确安全地超越任何前方车辆的可能性的主动预测。为了提供一个全面的系统,考虑了与驾驶员、车辆、道路和环境相关的不同因素,这些因素对机动有影响。除了考虑主要的超车策略,包括加速、飞行、背负和2+。所提出的系统是一个基于车辆的安全系统,基于通过Hello信标消息和一组传感器从驾驶附近收集上下文信息,这些传感器被用作上下文感知架构的推理过程的一部分,以安全地启动超车动作。实现了人工神经网络(ANN)和支持向量机(SVM)学习算法的分类模型。车辆驾驶模拟器STISIM Drive®用于对100名不同年龄、性别和心理意识水平的参与者进行驾驶实验。从DOAS获得的结果表明,在协助安全超车机动方面具有高精度。该分类模型通过完美的准确性和极低的结果误差,在预测中显示出了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a New Driver Assistance System for Overtaking on Two-Lane Roads using Predictive Models
The complexity of an overtaking maneuver on two-lane roads merits a thorough method for developing an assistance system to prevent accidents, thus reducing the number of fatalities and the associated economic costs. This research aims to introduce a new Driver Overtaking Assistance System (DOAS). This system is based on the proactive prediction of the possibility of overtaking any preceding vehicle(s) both accurately and safely. To provide a comprehensive system, different factors related to the driver, the vehicle, the road, and the environment which have an impact on the maneuver have been taken into consideration. In addition to considering the main overtaking strategies including accelerative, flying, piggybacking, and the 2+. The proposed system is a vehicle-based safety system based on the collection of contextual information from the driving vicinity through Hello beacon messages and a set of sensors that are used as part of the reasoning process of the context-aware architecture to safely initiate the overtaking maneuver. A classification model was implemented for both the Artificial Neural Network (ANN) and Support Vector Machine (SVM) learning algorithms. A vehicle driving simulator STISIM Drive® was used to conduct driving experiments for 100 participants of different ages, gender, and levels of mental awareness. The results obtained from the DOAS show high accuracy in aiding a safe overtaking maneuver. The classification model shows promising results in the predictions, through perfect accuracy and a very low level of outcome errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica Polytechnica Transportation Engineering
Periodica Polytechnica Transportation Engineering Engineering-Automotive Engineering
CiteScore
2.60
自引率
0.00%
发文量
47
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
期刊最新文献
Investigating the Preference on Public Transport in a Metropolitan Area of Lampung Province, Indonesia Secure Travel Planning Using a Heuristic Algorithm Verification of Railway Control Systems Using Model Checking and CTL, Explained Through a Case Study A Grid-based Framework for Managing Autonomous Vehicles' Movement at Intersections The Environmental Sustainability Potential of Autonomous Vehicles: An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1