热环境下FGM加筋板弯曲和自由振动分析的移动Kriging插值无网格法

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of Computational Methods Pub Date : 2023-07-11 DOI:10.1142/s0219876223500159
L. Peng, S. Y. Chen, W. Chen, X. C. He
{"title":"热环境下FGM加筋板弯曲和自由振动分析的移动Kriging插值无网格法","authors":"L. Peng, S. Y. Chen, W. Chen, X. C. He","doi":"10.1142/s0219876223500159","DOIUrl":null,"url":null,"abstract":"This paper adopts the Moving Kriging (MK) interpolation meshless method to analyze the static and dynamic behaviors of stiffened functionally graded material (FGM) plate in thermal environment based on the physical neutral surface. The ribbed FGM plate is regarded as a composite structure of a FGM plate and ribs. The displacement transformation relationship between stiffeners and FGM plates is obtained through the displacement compatible conditions and MK interpolation. The meshfree model for ribbed FGM plate is obtained by superimposing the total energy of the FGM plate and the stiffeners based on the first-order shear deformation theory (FSDT) and physical neutral surface. The nonlinear temperature field along thickness direction is introduced into the meshless model of stiffened FGM plate. The equations governing the bending and free vibration of the ribbed FGM plate in thermal environment are obtained according to the principle of Minimum Potential Energy and Hamilton’s Principle. Thereafter, several ribbed FGM plate examples in different temperatures and with different locations of ribs are calculated. The results are compared with those given by the ABAQUS and literature. The results show that the effectiveness and accuracy of the proposed method in analyzing the ribbed FGM plate in thermal environment.","PeriodicalId":54968,"journal":{"name":"International Journal of Computational Methods","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Moving Kriging Interpolation Meshless for Bending and Free Vibration Analysis of the Stiffened FGM Plates in Thermal Environment\",\"authors\":\"L. Peng, S. Y. Chen, W. Chen, X. C. He\",\"doi\":\"10.1142/s0219876223500159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper adopts the Moving Kriging (MK) interpolation meshless method to analyze the static and dynamic behaviors of stiffened functionally graded material (FGM) plate in thermal environment based on the physical neutral surface. The ribbed FGM plate is regarded as a composite structure of a FGM plate and ribs. The displacement transformation relationship between stiffeners and FGM plates is obtained through the displacement compatible conditions and MK interpolation. The meshfree model for ribbed FGM plate is obtained by superimposing the total energy of the FGM plate and the stiffeners based on the first-order shear deformation theory (FSDT) and physical neutral surface. The nonlinear temperature field along thickness direction is introduced into the meshless model of stiffened FGM plate. The equations governing the bending and free vibration of the ribbed FGM plate in thermal environment are obtained according to the principle of Minimum Potential Energy and Hamilton’s Principle. Thereafter, several ribbed FGM plate examples in different temperatures and with different locations of ribs are calculated. The results are compared with those given by the ABAQUS and literature. The results show that the effectiveness and accuracy of the proposed method in analyzing the ribbed FGM plate in thermal environment.\",\"PeriodicalId\":54968,\"journal\":{\"name\":\"International Journal of Computational Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Methods\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219876223500159\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219876223500159","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于物理中性面,采用无网格移动Kriging (MK)插值方法分析了加筋功能梯度材料(FGM)板在热环境下的静动态行为。肋形女性生殖器切割板被认为是女性生殖器切割板和肋骨的复合结构。通过位移相容条件和MK插值,得到了加强筋与FGM板之间的位移变换关系。基于一阶剪切变形理论(FSDT)和物理中性面,将FGM板和加劲筋的总能量叠加,得到了肋FGM板的无网格模型。在加筋FGM板无网格模型中引入沿厚度方向的非线性温度场。根据最小势能原理和哈密顿原理,得到了热环境下肋板弯曲和自由振动的控制方程。在此基础上,对不同温度和肋位置下的FGM肋板实例进行了计算。结果与ABAQUS和文献给出的结果进行了比较。结果表明,所提出的方法在热环境下对带肋FGM板进行分析的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Moving Kriging Interpolation Meshless for Bending and Free Vibration Analysis of the Stiffened FGM Plates in Thermal Environment
This paper adopts the Moving Kriging (MK) interpolation meshless method to analyze the static and dynamic behaviors of stiffened functionally graded material (FGM) plate in thermal environment based on the physical neutral surface. The ribbed FGM plate is regarded as a composite structure of a FGM plate and ribs. The displacement transformation relationship between stiffeners and FGM plates is obtained through the displacement compatible conditions and MK interpolation. The meshfree model for ribbed FGM plate is obtained by superimposing the total energy of the FGM plate and the stiffeners based on the first-order shear deformation theory (FSDT) and physical neutral surface. The nonlinear temperature field along thickness direction is introduced into the meshless model of stiffened FGM plate. The equations governing the bending and free vibration of the ribbed FGM plate in thermal environment are obtained according to the principle of Minimum Potential Energy and Hamilton’s Principle. Thereafter, several ribbed FGM plate examples in different temperatures and with different locations of ribs are calculated. The results are compared with those given by the ABAQUS and literature. The results show that the effectiveness and accuracy of the proposed method in analyzing the ribbed FGM plate in thermal environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Methods
International Journal of Computational Methods ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.30
自引率
17.60%
发文量
84
审稿时长
15 months
期刊介绍: The purpose of this journal is to provide a unique forum for the fast publication and rapid dissemination of original research results and innovative ideas on the state-of-the-art on computational methods. The methods should be innovative and of high scholarly, academic and practical value. The journal is devoted to all aspects of modern computational methods including mathematical formulations and theoretical investigations; interpolations and approximation techniques; error analysis techniques and algorithms; fast algorithms and real-time computation; multi-scale bridging algorithms; adaptive analysis techniques and algorithms; implementation, coding and parallelization issues; novel and practical applications. The articles can involve theory, algorithm, programming, coding, numerical simulation and/or novel application of computational techniques to problems in engineering, science, and other disciplines related to computations. Examples of fields covered by the journal are: Computational mechanics for solids and structures, Computational fluid dynamics, Computational heat transfer, Computational inverse problem, Computational mathematics, Computational meso/micro/nano mechanics, Computational biology, Computational penetration mechanics, Meshfree methods, Particle methods, Molecular and Quantum methods, Advanced Finite element methods, Advanced Finite difference methods, Advanced Finite volume methods, High-performance computing techniques.
期刊最新文献
Sound insulation characteristics of sandwich thin-plate acoustic metamaterial: analysis and optimization Meshless technique based on moving least squares approximation for numerical solutions of linear and nonlinear third-kind VIEs Enhancement of Heat Transfer in the Copper Square Duct with Ribs in the Application of Gas Turbine Blade Cooling Systems: A Hybrid Approach On Cauchy problem solution for a harmonic function in a simply connected domain with multi-component boundary Deflection, stresses and buckling analysis of porous FGM plates with Kerr-type elastic foundations using a new five-unknown trigonometric shear deformation theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1