Raghavendra Srinivasaiah, M. Meenakshi, Ravikumar Hodikehosalli Chennegowda, SantoshKumar Jankatti
{"title":"用机器学习分析和预测种子质量","authors":"Raghavendra Srinivasaiah, M. Meenakshi, Ravikumar Hodikehosalli Chennegowda, SantoshKumar Jankatti","doi":"10.11591/ijece.v13i5.pp5770-5781","DOIUrl":null,"url":null,"abstract":"The mainstay of the economy has always been agriculture, and the majority of tasks are still carried out without the use of modern technology. Currently, the ability of human intelligence to forecast seed quality is used. Because it lacks a validation method, the existing seed prediction analysis is ineffective. Here, we have tried to create a prediction model that uses machine learning algorithms to forecast seed quality, leading to high crop yield and high-quality harvests. For precise seed categorization, this model was created using convolutional neural networks and trained using the seed dataset. Using data that can be used to forecast the future, this model is used to learn about whether the seeds are of premium quality, standard quality, or regular quality. While testing data are employed in the algorithm’s predictive analytics, training data and validation data are used for categorization reasons. Thus, by examining the training accuracy of the convolution neural network (CNN) model and the prediction accuracy of the algorithm, the project’s primary goal is to develop the best method for the more accurate prediction of seed quality.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and prediction of seed quality using machine learning\",\"authors\":\"Raghavendra Srinivasaiah, M. Meenakshi, Ravikumar Hodikehosalli Chennegowda, SantoshKumar Jankatti\",\"doi\":\"10.11591/ijece.v13i5.pp5770-5781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mainstay of the economy has always been agriculture, and the majority of tasks are still carried out without the use of modern technology. Currently, the ability of human intelligence to forecast seed quality is used. Because it lacks a validation method, the existing seed prediction analysis is ineffective. Here, we have tried to create a prediction model that uses machine learning algorithms to forecast seed quality, leading to high crop yield and high-quality harvests. For precise seed categorization, this model was created using convolutional neural networks and trained using the seed dataset. Using data that can be used to forecast the future, this model is used to learn about whether the seeds are of premium quality, standard quality, or regular quality. While testing data are employed in the algorithm’s predictive analytics, training data and validation data are used for categorization reasons. Thus, by examining the training accuracy of the convolution neural network (CNN) model and the prediction accuracy of the algorithm, the project’s primary goal is to develop the best method for the more accurate prediction of seed quality.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5770-5781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5770-5781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Analysis and prediction of seed quality using machine learning
The mainstay of the economy has always been agriculture, and the majority of tasks are still carried out without the use of modern technology. Currently, the ability of human intelligence to forecast seed quality is used. Because it lacks a validation method, the existing seed prediction analysis is ineffective. Here, we have tried to create a prediction model that uses machine learning algorithms to forecast seed quality, leading to high crop yield and high-quality harvests. For precise seed categorization, this model was created using convolutional neural networks and trained using the seed dataset. Using data that can be used to forecast the future, this model is used to learn about whether the seeds are of premium quality, standard quality, or regular quality. While testing data are employed in the algorithm’s predictive analytics, training data and validation data are used for categorization reasons. Thus, by examining the training accuracy of the convolution neural network (CNN) model and the prediction accuracy of the algorithm, the project’s primary goal is to develop the best method for the more accurate prediction of seed quality.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]