A. Salma, A. Bustamam, A. Yudantha, A. Victor, W. Mangunwardoyo
{"title":"基于卷积神经网络和注意机制的多类型糖尿病视网膜病变人工智能检测方法","authors":"A. Salma, A. Bustamam, A. Yudantha, A. Victor, W. Mangunwardoyo","doi":"10.15849/ijasca.211128.08","DOIUrl":null,"url":null,"abstract":"The number of people around the world who have diabetes is about 422 million. Diabetes seriously affects the blood vessels in the retina, a disease called diabetic retinopathy (DR). The ophthalmologist examines signs through fundus images, such microaneurysm, exudates and neovascularisation and determines the suitable treatment for patient based on the condition. Currently, doctors require a long time and professional skills to detect DR. This study aimed to implement artificial intelligence (AI) to resolve the lack of current methods. This study implemented AI for detecting and classifying DR. AI uses deep learning, such the attention mechanism algorithm and AlexNet architecture. The attention mechanism algorithm focuses on detecting the pathological area in the fundus images, and AlexNet is used to classify DR into five levels based on the pathological area. This study also compared AlexNet architecture with and without attention mechanism. We obtained 344 fundus images from the Kaggle dataset, which contains normal, mild, moderate, severe and proliferative DR. The highest accuracy in this study is up to 91% and used the attention mechanism algorithm and AlexNet architecture. The experiment shows that our proposed method can provide results that can detect the pathological areas and effectively classify DR. Keywords: Artificial intelligence, Diabetic Retinopathy, Attention Mechanism, AlexNet","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Approach in Multiclass Diabetic Retinopathy Detection Using Convolutional Neural Network and Attention Mechanism\",\"authors\":\"A. Salma, A. Bustamam, A. Yudantha, A. Victor, W. Mangunwardoyo\",\"doi\":\"10.15849/ijasca.211128.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of people around the world who have diabetes is about 422 million. Diabetes seriously affects the blood vessels in the retina, a disease called diabetic retinopathy (DR). The ophthalmologist examines signs through fundus images, such microaneurysm, exudates and neovascularisation and determines the suitable treatment for patient based on the condition. Currently, doctors require a long time and professional skills to detect DR. This study aimed to implement artificial intelligence (AI) to resolve the lack of current methods. This study implemented AI for detecting and classifying DR. AI uses deep learning, such the attention mechanism algorithm and AlexNet architecture. The attention mechanism algorithm focuses on detecting the pathological area in the fundus images, and AlexNet is used to classify DR into five levels based on the pathological area. This study also compared AlexNet architecture with and without attention mechanism. We obtained 344 fundus images from the Kaggle dataset, which contains normal, mild, moderate, severe and proliferative DR. The highest accuracy in this study is up to 91% and used the attention mechanism algorithm and AlexNet architecture. The experiment shows that our proposed method can provide results that can detect the pathological areas and effectively classify DR. Keywords: Artificial intelligence, Diabetic Retinopathy, Attention Mechanism, AlexNet\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.211128.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.211128.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Artificial Intelligence Approach in Multiclass Diabetic Retinopathy Detection Using Convolutional Neural Network and Attention Mechanism
The number of people around the world who have diabetes is about 422 million. Diabetes seriously affects the blood vessels in the retina, a disease called diabetic retinopathy (DR). The ophthalmologist examines signs through fundus images, such microaneurysm, exudates and neovascularisation and determines the suitable treatment for patient based on the condition. Currently, doctors require a long time and professional skills to detect DR. This study aimed to implement artificial intelligence (AI) to resolve the lack of current methods. This study implemented AI for detecting and classifying DR. AI uses deep learning, such the attention mechanism algorithm and AlexNet architecture. The attention mechanism algorithm focuses on detecting the pathological area in the fundus images, and AlexNet is used to classify DR into five levels based on the pathological area. This study also compared AlexNet architecture with and without attention mechanism. We obtained 344 fundus images from the Kaggle dataset, which contains normal, mild, moderate, severe and proliferative DR. The highest accuracy in this study is up to 91% and used the attention mechanism algorithm and AlexNet architecture. The experiment shows that our proposed method can provide results that can detect the pathological areas and effectively classify DR. Keywords: Artificial intelligence, Diabetic Retinopathy, Attention Mechanism, AlexNet
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.