基于卷积神经网络和注意机制的多类型糖尿病视网膜病变人工智能检测方法

A. Salma, A. Bustamam, A. Yudantha, A. Victor, W. Mangunwardoyo
{"title":"基于卷积神经网络和注意机制的多类型糖尿病视网膜病变人工智能检测方法","authors":"A. Salma, A. Bustamam, A. Yudantha, A. Victor, W. Mangunwardoyo","doi":"10.15849/ijasca.211128.08","DOIUrl":null,"url":null,"abstract":"The number of people around the world who have diabetes is about 422 million. Diabetes seriously affects the blood vessels in the retina, a disease called diabetic retinopathy (DR). The ophthalmologist examines signs through fundus images, such microaneurysm, exudates and neovascularisation and determines the suitable treatment for patient based on the condition. Currently, doctors require a long time and professional skills to detect DR. This study aimed to implement artificial intelligence (AI) to resolve the lack of current methods. This study implemented AI for detecting and classifying DR. AI uses deep learning, such the attention mechanism algorithm and AlexNet architecture. The attention mechanism algorithm focuses on detecting the pathological area in the fundus images, and AlexNet is used to classify DR into five levels based on the pathological area. This study also compared AlexNet architecture with and without attention mechanism. We obtained 344 fundus images from the Kaggle dataset, which contains normal, mild, moderate, severe and proliferative DR. The highest accuracy in this study is up to 91% and used the attention mechanism algorithm and AlexNet architecture. The experiment shows that our proposed method can provide results that can detect the pathological areas and effectively classify DR. Keywords: Artificial intelligence, Diabetic Retinopathy, Attention Mechanism, AlexNet","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Approach in Multiclass Diabetic Retinopathy Detection Using Convolutional Neural Network and Attention Mechanism\",\"authors\":\"A. Salma, A. Bustamam, A. Yudantha, A. Victor, W. Mangunwardoyo\",\"doi\":\"10.15849/ijasca.211128.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of people around the world who have diabetes is about 422 million. Diabetes seriously affects the blood vessels in the retina, a disease called diabetic retinopathy (DR). The ophthalmologist examines signs through fundus images, such microaneurysm, exudates and neovascularisation and determines the suitable treatment for patient based on the condition. Currently, doctors require a long time and professional skills to detect DR. This study aimed to implement artificial intelligence (AI) to resolve the lack of current methods. This study implemented AI for detecting and classifying DR. AI uses deep learning, such the attention mechanism algorithm and AlexNet architecture. The attention mechanism algorithm focuses on detecting the pathological area in the fundus images, and AlexNet is used to classify DR into five levels based on the pathological area. This study also compared AlexNet architecture with and without attention mechanism. We obtained 344 fundus images from the Kaggle dataset, which contains normal, mild, moderate, severe and proliferative DR. The highest accuracy in this study is up to 91% and used the attention mechanism algorithm and AlexNet architecture. The experiment shows that our proposed method can provide results that can detect the pathological areas and effectively classify DR. Keywords: Artificial intelligence, Diabetic Retinopathy, Attention Mechanism, AlexNet\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.211128.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.211128.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

全世界患有糖尿病的人数约为4.22亿。糖尿病严重影响视网膜血管,这种疾病被称为糖尿病视网膜病变(DR)。眼科医生通过眼底图像检查体征,如微动脉瘤、渗出物和新生血管,并根据患者的病情确定合适的治疗方法。目前,医生对dr的检测需要较长的时间和专业的技能,本研究旨在通过人工智能(AI)来解决目前方法的不足。本研究实现了人工智能对dr的检测和分类,人工智能使用了深度学习,如注意机制算法和AlexNet架构。注意机制算法侧重于检测眼底图像中的病理区域,并利用AlexNet基于病理区域将DR分为5个级别。本研究还比较了AlexNet架构有和没有注意机制的情况。我们从Kaggle数据集中获得了344张眼底图像,其中包括正常、轻度、中度、重度和增生性dr,本研究使用了注意机制算法和AlexNet架构,准确率最高可达91%。实验结果表明,本文提出的方法能够检测出病变区域并对dr进行有效分类。关键词:人工智能,糖尿病视网膜病变,注意机制,AlexNet
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligence Approach in Multiclass Diabetic Retinopathy Detection Using Convolutional Neural Network and Attention Mechanism
The number of people around the world who have diabetes is about 422 million. Diabetes seriously affects the blood vessels in the retina, a disease called diabetic retinopathy (DR). The ophthalmologist examines signs through fundus images, such microaneurysm, exudates and neovascularisation and determines the suitable treatment for patient based on the condition. Currently, doctors require a long time and professional skills to detect DR. This study aimed to implement artificial intelligence (AI) to resolve the lack of current methods. This study implemented AI for detecting and classifying DR. AI uses deep learning, such the attention mechanism algorithm and AlexNet architecture. The attention mechanism algorithm focuses on detecting the pathological area in the fundus images, and AlexNet is used to classify DR into five levels based on the pathological area. This study also compared AlexNet architecture with and without attention mechanism. We obtained 344 fundus images from the Kaggle dataset, which contains normal, mild, moderate, severe and proliferative DR. The highest accuracy in this study is up to 91% and used the attention mechanism algorithm and AlexNet architecture. The experiment shows that our proposed method can provide results that can detect the pathological areas and effectively classify DR. Keywords: Artificial intelligence, Diabetic Retinopathy, Attention Mechanism, AlexNet
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Soft Computing and its Applications
International Journal of Advances in Soft Computing and its Applications Computer Science-Computer Science Applications
CiteScore
3.30
自引率
0.00%
发文量
31
期刊介绍: The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.
期刊最新文献
Insider Threat Prevention in the US Banking System Cybersecurity Strategies for Safeguarding Customer’s Data and Preventing Financial Fraud in the United States Financial Sectors Multilevel Thresholding Image Segmentation Based-Logarithm Decreasing Inertia Weight Particle Swarm Optimization Improvement on I-Devices Using L-GCNN Classifier for Smart Mosque Simulation Supervised Learning Algorithms for Predicting Customer Churn with Hyperparameter Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1