使用自动化过程生成阅读理解项目

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY International Journal of Testing Pub Date : 2022-10-02 DOI:10.1080/15305058.2022.2070755
Jinnie Shin, Mark J. Gierl
{"title":"使用自动化过程生成阅读理解项目","authors":"Jinnie Shin, Mark J. Gierl","doi":"10.1080/15305058.2022.2070755","DOIUrl":null,"url":null,"abstract":"Abstract Over the last five years, tremendous strides have been made in advancing the AIG methodology required to produce items in diverse content areas. However, the one content area where enormous problems remain unsolved is language arts, generally, and reading comprehension, more specifically. While reading comprehension test items can be created using many different item formats, fill-in-the-blank remains one of the most common when the goal is to measure inferential knowledge. Currently, the item development process used to create fill-in-the-blank reading comprehension items is time-consuming and expensive. Hence, the purpose of the study is to introduce a new systematic method for generating fill-in-the-blank reading comprehension items using an item modeling approach. We describe the use of different unsupervised learning methods that can be paired with natural language processing techniques to identify the salient item models within existing texts. To demonstrate the capacity of our method, 1,013 test items were generated from 100 input texts taken from fill-in-the-blank reading comprehension items used on a high-stakes college entrance exam in South Korea. Our validation results indicated that the generated items produced higher semantic similarities between the item options while depicting little to no syntactic differences with the traditionally written test items.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":"22 1","pages":"289 - 311"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating reading comprehension items using automated processes\",\"authors\":\"Jinnie Shin, Mark J. Gierl\",\"doi\":\"10.1080/15305058.2022.2070755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Over the last five years, tremendous strides have been made in advancing the AIG methodology required to produce items in diverse content areas. However, the one content area where enormous problems remain unsolved is language arts, generally, and reading comprehension, more specifically. While reading comprehension test items can be created using many different item formats, fill-in-the-blank remains one of the most common when the goal is to measure inferential knowledge. Currently, the item development process used to create fill-in-the-blank reading comprehension items is time-consuming and expensive. Hence, the purpose of the study is to introduce a new systematic method for generating fill-in-the-blank reading comprehension items using an item modeling approach. We describe the use of different unsupervised learning methods that can be paired with natural language processing techniques to identify the salient item models within existing texts. To demonstrate the capacity of our method, 1,013 test items were generated from 100 input texts taken from fill-in-the-blank reading comprehension items used on a high-stakes college entrance exam in South Korea. Our validation results indicated that the generated items produced higher semantic similarities between the item options while depicting little to no syntactic differences with the traditionally written test items.\",\"PeriodicalId\":46615,\"journal\":{\"name\":\"International Journal of Testing\",\"volume\":\"22 1\",\"pages\":\"289 - 311\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15305058.2022.2070755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2022.2070755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在过去的五年里,在推进制作不同内容领域项目所需的AIG方法方面取得了巨大进展。然而,一个巨大问题仍未解决的内容领域是语言艺术,更具体地说是阅读理解。虽然阅读理解测试项目可以使用许多不同的项目格式创建,但当目标是测量推理知识时,填空仍然是最常见的项目之一。目前,用于创建填空阅读理解项目的项目开发过程既耗时又昂贵。因此,本研究的目的是介绍一种利用项目建模方法生成填空阅读理解项目的新的系统方法。我们描述了使用不同的无监督学习方法,这些方法可以与自然语言处理技术相结合,以识别现有文本中的显著项目模型。为了证明我们的方法的能力,从韩国一次高风险大学入学考试中使用的填空阅读理解项目中提取的100个输入文本中生成了1013个测试项目。我们的验证结果表明,生成的项目在项目选项之间产生了更高的语义相似性,同时与传统的书面测试项目几乎没有语法差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating reading comprehension items using automated processes
Abstract Over the last five years, tremendous strides have been made in advancing the AIG methodology required to produce items in diverse content areas. However, the one content area where enormous problems remain unsolved is language arts, generally, and reading comprehension, more specifically. While reading comprehension test items can be created using many different item formats, fill-in-the-blank remains one of the most common when the goal is to measure inferential knowledge. Currently, the item development process used to create fill-in-the-blank reading comprehension items is time-consuming and expensive. Hence, the purpose of the study is to introduce a new systematic method for generating fill-in-the-blank reading comprehension items using an item modeling approach. We describe the use of different unsupervised learning methods that can be paired with natural language processing techniques to identify the salient item models within existing texts. To demonstrate the capacity of our method, 1,013 test items were generated from 100 input texts taken from fill-in-the-blank reading comprehension items used on a high-stakes college entrance exam in South Korea. Our validation results indicated that the generated items produced higher semantic similarities between the item options while depicting little to no syntactic differences with the traditionally written test items.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
期刊最新文献
Combining Mokken Scale Analysis with and rasch measurement theory to explore differences in measurement quality between subgroups Examining the construct validity of the MIDUS version of the Multidimensional Personality Questionnaire (MPQ) Beyond group comparisons: Accounting for intersectional sources of bias in international survey measures Can the dark core of personality be measured briefly, multidimensionally, and invariantly? The D25 measure Investigating the acquiescent responding impact in empathy measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1