遥感数据的空间重采样-精度与冗余

Q3 Earth and Planetary Sciences Polish Journal of Soil Science Pub Date : 2020-12-26 DOI:10.17951/PJSS.2020.53.2.293-306
P. Bartmiński, M. Siłuch
{"title":"遥感数据的空间重采样-精度与冗余","authors":"P. Bartmiński, M. Siłuch","doi":"10.17951/PJSS.2020.53.2.293-306","DOIUrl":null,"url":null,"abstract":"Active surface reflectance in a UV/VIS/NIR range deserve special attention among remote sensing techniques due to the potential of information it carries. Data are diversified in terms of spatial, spectral and temporal resolution, resulting in differences in data comparison and collection of material that may be redundant. The aim of the study was to assess whether the use of high-resolution data in analysis of an intensively used meadow is justified. 116 images from Planet sensor were analysed, registered from 2016 to 2019. NDVI, EVI and GLI were calculated for all of the terms. Resampling of data was carried out, with the use of 30 m grid, prepared on the basis of 3 m Planet pixel. Data with different resolution was compared. Seasonal course of values was similar in all cases, values of chosen deciles were nearly the same, however, differences in minimum and maximum values were noted.  It was concluded that the use of high-resolution data is not advisable in the context of the spatial variability of seasonal vegetation indices in the case of a terrain with homogeneous land cover. Values of structurally simplified indices are less homogeneous than that of indicators consisting of a greater number of modifying factors.","PeriodicalId":20295,"journal":{"name":"Polish Journal of Soil Science","volume":"53 1","pages":"293-306"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial resampling of remote sensing data – accuracy vs. redundancy\",\"authors\":\"P. Bartmiński, M. Siłuch\",\"doi\":\"10.17951/PJSS.2020.53.2.293-306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active surface reflectance in a UV/VIS/NIR range deserve special attention among remote sensing techniques due to the potential of information it carries. Data are diversified in terms of spatial, spectral and temporal resolution, resulting in differences in data comparison and collection of material that may be redundant. The aim of the study was to assess whether the use of high-resolution data in analysis of an intensively used meadow is justified. 116 images from Planet sensor were analysed, registered from 2016 to 2019. NDVI, EVI and GLI were calculated for all of the terms. Resampling of data was carried out, with the use of 30 m grid, prepared on the basis of 3 m Planet pixel. Data with different resolution was compared. Seasonal course of values was similar in all cases, values of chosen deciles were nearly the same, however, differences in minimum and maximum values were noted.  It was concluded that the use of high-resolution data is not advisable in the context of the spatial variability of seasonal vegetation indices in the case of a terrain with homogeneous land cover. Values of structurally simplified indices are less homogeneous than that of indicators consisting of a greater number of modifying factors.\",\"PeriodicalId\":20295,\"journal\":{\"name\":\"Polish Journal of Soil Science\",\"volume\":\"53 1\",\"pages\":\"293-306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17951/PJSS.2020.53.2.293-306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17951/PJSS.2020.53.2.293-306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

摘要

紫外/可见光/近红外范围内的主动表面反射率由于其携带的信息潜力,在遥感技术中值得特别关注。数据在空间、光谱和时间分辨率方面是多样化的,导致数据比较和材料收集方面的差异可能是多余的。该研究的目的是评估在密集使用的草地分析中使用高分辨率数据是否合理。分析了2016年至2019年来自Planet传感器的116张图像。NDVI、EVI和GLI针对所有条款进行了计算。在3m Planet像素的基础上,使用30m网格对数据进行重新采样。比较了不同分辨率的数据。在所有情况下,数值的季节变化过程相似,所选十分位数的数值几乎相同,但注意到最小值和最大值的差异。得出的结论是,在土地覆盖均匀的地形中,考虑到季节植被指数的空间变异性,使用高分辨率数据是不可取的。结构简化指数的值不如由大量修正因子组成的指标的值均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial resampling of remote sensing data – accuracy vs. redundancy
Active surface reflectance in a UV/VIS/NIR range deserve special attention among remote sensing techniques due to the potential of information it carries. Data are diversified in terms of spatial, spectral and temporal resolution, resulting in differences in data comparison and collection of material that may be redundant. The aim of the study was to assess whether the use of high-resolution data in analysis of an intensively used meadow is justified. 116 images from Planet sensor were analysed, registered from 2016 to 2019. NDVI, EVI and GLI were calculated for all of the terms. Resampling of data was carried out, with the use of 30 m grid, prepared on the basis of 3 m Planet pixel. Data with different resolution was compared. Seasonal course of values was similar in all cases, values of chosen deciles were nearly the same, however, differences in minimum and maximum values were noted.  It was concluded that the use of high-resolution data is not advisable in the context of the spatial variability of seasonal vegetation indices in the case of a terrain with homogeneous land cover. Values of structurally simplified indices are less homogeneous than that of indicators consisting of a greater number of modifying factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Journal of Soil Science
Polish Journal of Soil Science Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
1.00
自引率
0.00%
发文量
5
期刊介绍: The Journal focuses mainly on all issues of soil sciences, agricultural chemistry, soil technology and protection and soil environmental functions. Papers concerning various aspects of functioning of the environment (including geochemistry, geomophology, geoecology etc.) as well as new techniques of surveing, especially remote sensing, are also published.
期刊最新文献
Application Technique and Dosage of Halotolerant Nitrogen Biofertilizer for Increasing Soil Total N, N Uptake, Chlorophyll Content, Photosynthate Accumulation and Growth of Rice Plants in Saline Ecosystem Distribution of Carbon Stocks in Peat Bottom Based on Thickness Class in Pelalawan Village (Riau Province, Indonesia) Characterization and Bioassay of Rhizophosphate Bacteria Producing Phytohormone and Organic Acid to Enhance the Maize Seedling Growth Black Soils Outside of the INBS Criteria in Slovakia Effects of Different Land Use Types on Soil Physico-Chemical Properties in Wolaita Zone, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1