H. Haig, A. Chegoonian, J. Davies, D. Bateson, P. Leavitt
{"title":"由于秋天蓝藻的大量繁殖,冬末的冰和水出现明显的蓝色变色","authors":"H. Haig, A. Chegoonian, J. Davies, D. Bateson, P. Leavitt","doi":"10.1080/10402381.2021.1992544","DOIUrl":null,"url":null,"abstract":"Abstract Haig HA, Chegoonian AM, Davies J-M, Bateson D, Leavitt PR. 2021. Marked blue discoloration of late winter ice and water due to autumn blooms of cyanobacteria. Lake Reserv Manage. 38:1–15. Continued eutrophication of inland waters by nutrient pollution can combine with unprecedented atmospheric and lake warming to create emergent environmental surprises. Here we report the first known occurrence of marked blue discoloration of ice and water in highly eutrophic prairie lakes during late winter 2021. Intense blue staining was reported first to governmental agencies by ice fishers in early March 2021, then communicated widely through social media, resulting in First Nations and public concern over potential septic field release, toxic spills, urban pollution, and agricultural mismanagement. Analysis of water from stained and reference sites using ultraviolet (UV)–visible spectrophotometry and high-performance liquid chromatography demonstrated that the blue color arose from high concentrations (∼14 mg/L) of the cyanobacterial pigment C-phycocyanin that was released after an unexpected bloom of Aphanizomenon flos-aquae in late October 2020 was frozen into littoral ice. Remote sensing using the Sentinel 3 A/B OLCI and Sentinel 2 A/B MSI satellite platforms suggested that blue staining encompassed 0.68 ± 0.24 km2 (4.25 ± 1.5% of lake surface area), persisted over 4 weeks, and was located within 50 m of the lakeshore in regions where fall blooms of cyanobacteria had been particularly dense. Although toxin levels were low (∼0.2 μg microcystin/L), high concentrations of C-phycocyanin raised public concern over eutrophication, pollution, and climate change, and resulted in rapid governmental and academic response. Given that climate change and nutrient pollution are increasing the magnitude and duration of cyanobacterial blooms, blue staining of lake ice may become widespread in eutrophic lakes subject to ice cover.","PeriodicalId":18017,"journal":{"name":"Lake and Reservoir Management","volume":"38 1","pages":"1 - 15"},"PeriodicalIF":1.1000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Marked blue discoloration of late winter ice and water due to autumn blooms of cyanobacteria\",\"authors\":\"H. Haig, A. Chegoonian, J. Davies, D. Bateson, P. Leavitt\",\"doi\":\"10.1080/10402381.2021.1992544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Haig HA, Chegoonian AM, Davies J-M, Bateson D, Leavitt PR. 2021. Marked blue discoloration of late winter ice and water due to autumn blooms of cyanobacteria. Lake Reserv Manage. 38:1–15. Continued eutrophication of inland waters by nutrient pollution can combine with unprecedented atmospheric and lake warming to create emergent environmental surprises. Here we report the first known occurrence of marked blue discoloration of ice and water in highly eutrophic prairie lakes during late winter 2021. Intense blue staining was reported first to governmental agencies by ice fishers in early March 2021, then communicated widely through social media, resulting in First Nations and public concern over potential septic field release, toxic spills, urban pollution, and agricultural mismanagement. Analysis of water from stained and reference sites using ultraviolet (UV)–visible spectrophotometry and high-performance liquid chromatography demonstrated that the blue color arose from high concentrations (∼14 mg/L) of the cyanobacterial pigment C-phycocyanin that was released after an unexpected bloom of Aphanizomenon flos-aquae in late October 2020 was frozen into littoral ice. Remote sensing using the Sentinel 3 A/B OLCI and Sentinel 2 A/B MSI satellite platforms suggested that blue staining encompassed 0.68 ± 0.24 km2 (4.25 ± 1.5% of lake surface area), persisted over 4 weeks, and was located within 50 m of the lakeshore in regions where fall blooms of cyanobacteria had been particularly dense. Although toxin levels were low (∼0.2 μg microcystin/L), high concentrations of C-phycocyanin raised public concern over eutrophication, pollution, and climate change, and resulted in rapid governmental and academic response. Given that climate change and nutrient pollution are increasing the magnitude and duration of cyanobacterial blooms, blue staining of lake ice may become widespread in eutrophic lakes subject to ice cover.\",\"PeriodicalId\":18017,\"journal\":{\"name\":\"Lake and Reservoir Management\",\"volume\":\"38 1\",\"pages\":\"1 - 15\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lake and Reservoir Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10402381.2021.1992544\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lake and Reservoir Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10402381.2021.1992544","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Marked blue discoloration of late winter ice and water due to autumn blooms of cyanobacteria
Abstract Haig HA, Chegoonian AM, Davies J-M, Bateson D, Leavitt PR. 2021. Marked blue discoloration of late winter ice and water due to autumn blooms of cyanobacteria. Lake Reserv Manage. 38:1–15. Continued eutrophication of inland waters by nutrient pollution can combine with unprecedented atmospheric and lake warming to create emergent environmental surprises. Here we report the first known occurrence of marked blue discoloration of ice and water in highly eutrophic prairie lakes during late winter 2021. Intense blue staining was reported first to governmental agencies by ice fishers in early March 2021, then communicated widely through social media, resulting in First Nations and public concern over potential septic field release, toxic spills, urban pollution, and agricultural mismanagement. Analysis of water from stained and reference sites using ultraviolet (UV)–visible spectrophotometry and high-performance liquid chromatography demonstrated that the blue color arose from high concentrations (∼14 mg/L) of the cyanobacterial pigment C-phycocyanin that was released after an unexpected bloom of Aphanizomenon flos-aquae in late October 2020 was frozen into littoral ice. Remote sensing using the Sentinel 3 A/B OLCI and Sentinel 2 A/B MSI satellite platforms suggested that blue staining encompassed 0.68 ± 0.24 km2 (4.25 ± 1.5% of lake surface area), persisted over 4 weeks, and was located within 50 m of the lakeshore in regions where fall blooms of cyanobacteria had been particularly dense. Although toxin levels were low (∼0.2 μg microcystin/L), high concentrations of C-phycocyanin raised public concern over eutrophication, pollution, and climate change, and resulted in rapid governmental and academic response. Given that climate change and nutrient pollution are increasing the magnitude and duration of cyanobacterial blooms, blue staining of lake ice may become widespread in eutrophic lakes subject to ice cover.
期刊介绍:
Lake and Reservoir Management (LRM) publishes original, previously unpublished studies relevant to lake and reservoir management. Papers address the management of lakes and reservoirs, their watersheds and tributaries, along with the limnology and ecology needed for sound management of these systems. Case studies that advance the science of lake management or confirm important management concepts are appropriate as long as there is clearly described management significance. Papers on economic, social, regulatory and policy aspects of lake management are also welcome with appropriate supporting data and management implications. Literature syntheses and papers developing a conceptual foundation of lake and watershed ecology will be considered for publication, but there needs to be clear emphasis on management implications. Modeling papers will be considered where the model is properly verified but it is also highly preferable that management based on the model has been taken and results have been documented. Application of known models to yet another system without a clear advance in resultant management are unlikely to be accepted. Shorter notes that convey important early results of long-term studies or provide data relating to causative agents or management approaches that warrant further study are acceptable even if the story is not yet complete. All submissions are subject to peer review to assure relevance and reliability for management application.