室内环境中观赏植物对臭氧污染的修复

P. Saxena, S. Sonwani
{"title":"室内环境中观赏植物对臭氧污染的修复","authors":"P. Saxena, S. Sonwani","doi":"10.22034/GJESM.2020.04.06","DOIUrl":null,"url":null,"abstract":"The indoor air quality is much more matter of concern as relative to ambient or outdoor air quality, especially in the context of human health.  However, very few studies have been reported for remediation of indoor ozone by plant species. The main objective of this study is to evaluate ozone deposition velocities and ozone removal effectiveness of three indoor ornamental plant species (Dracaena deremensis, Tagetes erecta and Lilium candidum) that can be used in the remediation of indoor ozone. Ozone deposition velocity was estimated through measurement of leaf surface areas of selected plant species and exposing them to 3-regular daytime cycles where ozone concentrations under controlled conditions first increased from 8 h followed by 16 h in the absence of ozone. Values of ozone deposition velocity after the completion of first exposure were found maximum (7.7 m/h) in case of Dracaena deremensis and minimum (0.5 m/h) after the completion third exposure in Lilium candidum. The ozone removal effectiveness found in the range of 0.7 to 13% for leaf surface area to room volume ratio of 0.06/m with reference to an air exchange system and background loss present in an indoor environment. Among the selected plant species, Dracaena deremensis has got the highest ozone deposition velocity as well as ozone removal effectiveness and Lilium candidum has got the lowest values. Hence, this study concludes with the sustainable use of ornamental plant species in the remediation of the indoor ozone pollution, which can further help in improving the health condition of the residents.","PeriodicalId":46495,"journal":{"name":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Remediation of ozone pollution by ornamental plants in indoor environment.\",\"authors\":\"P. Saxena, S. Sonwani\",\"doi\":\"10.22034/GJESM.2020.04.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The indoor air quality is much more matter of concern as relative to ambient or outdoor air quality, especially in the context of human health.  However, very few studies have been reported for remediation of indoor ozone by plant species. The main objective of this study is to evaluate ozone deposition velocities and ozone removal effectiveness of three indoor ornamental plant species (Dracaena deremensis, Tagetes erecta and Lilium candidum) that can be used in the remediation of indoor ozone. Ozone deposition velocity was estimated through measurement of leaf surface areas of selected plant species and exposing them to 3-regular daytime cycles where ozone concentrations under controlled conditions first increased from 8 h followed by 16 h in the absence of ozone. Values of ozone deposition velocity after the completion of first exposure were found maximum (7.7 m/h) in case of Dracaena deremensis and minimum (0.5 m/h) after the completion third exposure in Lilium candidum. The ozone removal effectiveness found in the range of 0.7 to 13% for leaf surface area to room volume ratio of 0.06/m with reference to an air exchange system and background loss present in an indoor environment. Among the selected plant species, Dracaena deremensis has got the highest ozone deposition velocity as well as ozone removal effectiveness and Lilium candidum has got the lowest values. Hence, this study concludes with the sustainable use of ornamental plant species in the remediation of the indoor ozone pollution, which can further help in improving the health condition of the residents.\",\"PeriodicalId\":46495,\"journal\":{\"name\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/GJESM.2020.04.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/GJESM.2020.04.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 13

摘要

相对于环境或室外空气质量,室内空气质量更令人关注,尤其是在人类健康的背景下。然而,很少有关于植物物种修复室内臭氧的研究报告。本研究的主要目的是评估三种可用于室内臭氧修复的室内观赏植物(龙血树、万寿菊和百合)的臭氧沉积速度和臭氧去除效果。臭氧沉积速度是通过测量选定植物物种的叶表面积并将其暴露于3个规则的日间周期来估计的,在控制条件下,臭氧浓度首先从8小时增加,然后在没有臭氧的情况下从16小时增加。在Dracaena deremensis的情况下,发现第一次暴露完成后的臭氧沉积速度值最大(7.7m/h),在Lilium candium的情况下发现第三次暴露完成时的臭氧沉积速率值最小(0.5m/h)。根据空气交换系统和室内环境中存在的背景损失,当叶表面积与房间体积比为0.06/m时,臭氧去除效率在0.7%至13%的范围内。在选定的植物物种中,龙血树的臭氧沉积速度和臭氧去除效果最高,而白百合的臭氧沉积速率和臭氧去除效率最低。因此,本研究得出结论,可持续利用观赏植物物种修复室内臭氧污染,有助于进一步改善居民的健康状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remediation of ozone pollution by ornamental plants in indoor environment.
The indoor air quality is much more matter of concern as relative to ambient or outdoor air quality, especially in the context of human health.  However, very few studies have been reported for remediation of indoor ozone by plant species. The main objective of this study is to evaluate ozone deposition velocities and ozone removal effectiveness of three indoor ornamental plant species (Dracaena deremensis, Tagetes erecta and Lilium candidum) that can be used in the remediation of indoor ozone. Ozone deposition velocity was estimated through measurement of leaf surface areas of selected plant species and exposing them to 3-regular daytime cycles where ozone concentrations under controlled conditions first increased from 8 h followed by 16 h in the absence of ozone. Values of ozone deposition velocity after the completion of first exposure were found maximum (7.7 m/h) in case of Dracaena deremensis and minimum (0.5 m/h) after the completion third exposure in Lilium candidum. The ozone removal effectiveness found in the range of 0.7 to 13% for leaf surface area to room volume ratio of 0.06/m with reference to an air exchange system and background loss present in an indoor environment. Among the selected plant species, Dracaena deremensis has got the highest ozone deposition velocity as well as ozone removal effectiveness and Lilium candidum has got the lowest values. Hence, this study concludes with the sustainable use of ornamental plant species in the remediation of the indoor ozone pollution, which can further help in improving the health condition of the residents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
2.90%
发文量
11
审稿时长
8 weeks
期刊最新文献
Urban green space during the Coronavirus disease pandemic with regard to the socioeconomic characteristics Healthcare waste characteristics and management in regional hospital and private clinic Environmental effect of the Coronavirus-19 determinants and lockdown on carbon emissions Carbon footprint and cost analysis of a bicycle lane in a municipality Microplastic abundance and distribution in surface water and sediment collected from the coastal area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1