Haijun Zhang, Hongyu Wang, Yabo Li, Keping Long, Victor C. M. Leung
{"title":"面向任务语义通信的智能资源分配研究","authors":"Haijun Zhang, Hongyu Wang, Yabo Li, Keping Long, Victor C. M. Leung","doi":"10.1109/MWC.008.2200504","DOIUrl":null,"url":null,"abstract":"Task-oriented semantic communication (TOSC) has significant advantages in reducing the amount of data transmission and alleviating the scarcity of spectrum resources. Unlike traditional communication, the resource allocation in semantic communication is tightly linked to target intelligent tasks and specific interaction requirements. In this article, the intelligent resource allocation in a task-oriented manner is investigated. To further improve spectrum utilization and energy sustainability, a communication network combining energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is considered. This article proposes a semantic-aware resource allocation scheme in the EH-CR-NOMA scenario, where the quality of experience (QoE) is adopted as the evaluation metric. To achieve the preferential occupation of resources by data with richer semantic information, a joint optimization problem of the transmit power, time slot division factor, and semantic compression ratio of the semantic communication user is formulated. With the goal of maximizing the long-term QoE of TOSC, a two-tier deep reinforcement learning framework is designed to solve the semantic-aware resource allocation problem. By striking a trade-off between semantic rate and semantic fidelity, the proposed scheme can better satisfy user intentions.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"30 1","pages":"70-77"},"PeriodicalIF":10.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Intelligent Resource Allocation on Task-Oriented Semantic Communication\",\"authors\":\"Haijun Zhang, Hongyu Wang, Yabo Li, Keping Long, Victor C. M. Leung\",\"doi\":\"10.1109/MWC.008.2200504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task-oriented semantic communication (TOSC) has significant advantages in reducing the amount of data transmission and alleviating the scarcity of spectrum resources. Unlike traditional communication, the resource allocation in semantic communication is tightly linked to target intelligent tasks and specific interaction requirements. In this article, the intelligent resource allocation in a task-oriented manner is investigated. To further improve spectrum utilization and energy sustainability, a communication network combining energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is considered. This article proposes a semantic-aware resource allocation scheme in the EH-CR-NOMA scenario, where the quality of experience (QoE) is adopted as the evaluation metric. To achieve the preferential occupation of resources by data with richer semantic information, a joint optimization problem of the transmit power, time slot division factor, and semantic compression ratio of the semantic communication user is formulated. With the goal of maximizing the long-term QoE of TOSC, a two-tier deep reinforcement learning framework is designed to solve the semantic-aware resource allocation problem. By striking a trade-off between semantic rate and semantic fidelity, the proposed scheme can better satisfy user intentions.\",\"PeriodicalId\":13342,\"journal\":{\"name\":\"IEEE Wireless Communications\",\"volume\":\"30 1\",\"pages\":\"70-77\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MWC.008.2200504\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MWC.008.2200504","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Toward Intelligent Resource Allocation on Task-Oriented Semantic Communication
Task-oriented semantic communication (TOSC) has significant advantages in reducing the amount of data transmission and alleviating the scarcity of spectrum resources. Unlike traditional communication, the resource allocation in semantic communication is tightly linked to target intelligent tasks and specific interaction requirements. In this article, the intelligent resource allocation in a task-oriented manner is investigated. To further improve spectrum utilization and energy sustainability, a communication network combining energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is considered. This article proposes a semantic-aware resource allocation scheme in the EH-CR-NOMA scenario, where the quality of experience (QoE) is adopted as the evaluation metric. To achieve the preferential occupation of resources by data with richer semantic information, a joint optimization problem of the transmit power, time slot division factor, and semantic compression ratio of the semantic communication user is formulated. With the goal of maximizing the long-term QoE of TOSC, a two-tier deep reinforcement learning framework is designed to solve the semantic-aware resource allocation problem. By striking a trade-off between semantic rate and semantic fidelity, the proposed scheme can better satisfy user intentions.
期刊介绍:
IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services.
Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.