概念型涡喷发动机的能量和火用参数优化

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-01-26 DOI:10.18186/thermal.1242919
H. Aygun
{"title":"概念型涡喷发动机的能量和火用参数优化","authors":"H. Aygun","doi":"10.18186/thermal.1242919","DOIUrl":null,"url":null,"abstract":"In this study, parametric cycle analysis of a conceptual turbojet engine with an afterburner (TJEAB) was conducted at sea level conditions-zero Mach. Based on this analysis, exergetic sustainability parameters of TJEAB were scrutinized for military mode (MM) and afterburner mode (ABM). Constitutively, several design parameters of TJEAB were chosen so as to optimize performance and exergetic parameters which consist of specific fuel consumption (SFC), overall efficiency, exergy efficiency, environmental effect factor (EEF) and exergetic sustainability index (ESI). In this context, compressor pressure ratio (CPR), turbine inlet temperature (TIT) were preferred due to high effect of these variables on engine performance. CPR ranges from 4 to 11 whereas TIT varies from 1150 K to 1550 K. According to optimization of performance parameters, minimum SFC was achieved as 28.59 g/kN.s at MM and 43.95 g/kN.s at ABM. On the other hand, maximum overall efficiency is determined as to be 13.07 % at MM and to be 8.5 % at ABM. As for exergetic parameters, exergy efficiency was calculated as maximum with 30.85 % at MM and 23.2 %at ABM. Finally, maximum exergetic sustainability index of TJEAB was computed as 0.446 at MM and 0.269 at ABM. It is thought that energetic and exergetic parameters analyzed in this analysis could guide in designing turbojet engines in terms of lower fuel consumption thereby environmental-benign.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of energy and exergy parameters for a conceptual after burning turbojet engine\",\"authors\":\"H. Aygun\",\"doi\":\"10.18186/thermal.1242919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, parametric cycle analysis of a conceptual turbojet engine with an afterburner (TJEAB) was conducted at sea level conditions-zero Mach. Based on this analysis, exergetic sustainability parameters of TJEAB were scrutinized for military mode (MM) and afterburner mode (ABM). Constitutively, several design parameters of TJEAB were chosen so as to optimize performance and exergetic parameters which consist of specific fuel consumption (SFC), overall efficiency, exergy efficiency, environmental effect factor (EEF) and exergetic sustainability index (ESI). In this context, compressor pressure ratio (CPR), turbine inlet temperature (TIT) were preferred due to high effect of these variables on engine performance. CPR ranges from 4 to 11 whereas TIT varies from 1150 K to 1550 K. According to optimization of performance parameters, minimum SFC was achieved as 28.59 g/kN.s at MM and 43.95 g/kN.s at ABM. On the other hand, maximum overall efficiency is determined as to be 13.07 % at MM and to be 8.5 % at ABM. As for exergetic parameters, exergy efficiency was calculated as maximum with 30.85 % at MM and 23.2 %at ABM. Finally, maximum exergetic sustainability index of TJEAB was computed as 0.446 at MM and 0.269 at ABM. It is thought that energetic and exergetic parameters analyzed in this analysis could guide in designing turbojet engines in terms of lower fuel consumption thereby environmental-benign.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1242919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1242919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,在零马赫的海平面条件下,对带加力的概念涡轮喷气发动机(TJEAB)进行了参数循环分析。在此基础上,对TJEAB的军事模式(MM)和加力模式(ABM)的运动可持续性参数进行了仔细的研究。从结构上选择了TJEAB的几个设计参数,以优化其性能和工作参数,这些参数包括比燃料消耗(SFC)、总效率、(火用)效率、环境影响因子(EEF)和工作可持续性指数(ESI)。在这种情况下,压缩机压力比(CPR)、涡轮进口温度(TIT)是优选的,因为这些变量对发动机性能的影响很大。CPR范围从4到11,而TIT范围从1150 K到1550 K。根据性能参数的优化,最小SFC在MM时达到28.59 g/kN.s,在ABM时达到43.95 g/kN.s。另一方面,最大总效率在MM时确定为13.07%,在ABM时确定为8.5%。对于火用参数,计算出最大火用效率,MM时为30.85%,ABM时为23.2%。最后,TJEAB的最大运动可持续性指数在MM时为0.446,在ABM时为0.269。认为本分析中分析的能量和运动参数可以指导涡轮喷气发动机的设计,从而降低燃料消耗,从而改善环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of energy and exergy parameters for a conceptual after burning turbojet engine
In this study, parametric cycle analysis of a conceptual turbojet engine with an afterburner (TJEAB) was conducted at sea level conditions-zero Mach. Based on this analysis, exergetic sustainability parameters of TJEAB were scrutinized for military mode (MM) and afterburner mode (ABM). Constitutively, several design parameters of TJEAB were chosen so as to optimize performance and exergetic parameters which consist of specific fuel consumption (SFC), overall efficiency, exergy efficiency, environmental effect factor (EEF) and exergetic sustainability index (ESI). In this context, compressor pressure ratio (CPR), turbine inlet temperature (TIT) were preferred due to high effect of these variables on engine performance. CPR ranges from 4 to 11 whereas TIT varies from 1150 K to 1550 K. According to optimization of performance parameters, minimum SFC was achieved as 28.59 g/kN.s at MM and 43.95 g/kN.s at ABM. On the other hand, maximum overall efficiency is determined as to be 13.07 % at MM and to be 8.5 % at ABM. As for exergetic parameters, exergy efficiency was calculated as maximum with 30.85 % at MM and 23.2 %at ABM. Finally, maximum exergetic sustainability index of TJEAB was computed as 0.446 at MM and 0.269 at ABM. It is thought that energetic and exergetic parameters analyzed in this analysis could guide in designing turbojet engines in terms of lower fuel consumption thereby environmental-benign.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1