{"title":"作为全球和本地古气候指标的日本石笋的氧同位素","authors":"Akihiro Kano, Hirokazu Kato, Akira Murata","doi":"10.1111/iar.12491","DOIUrl":null,"url":null,"abstract":"<p>Stalagmite oxygen isotopes (δ<sup>18</sup>O) have been used to reconstruct terrestrial paleoclimates during the late Pleistocene and Holocene. However, the interpretation of the δ<sup>18</sup>O is not straightforward when determining the factor controlling δ<sup>18</sup>O; temperature or water δ<sup>18</sup>O. In addition, the water δ<sup>18</sup>O changes with rainfall intensity (amount effect), rainfall seasonality, and some other factors. Here, we first review the hydrochemical processes and behaviors of the oxygen isotopes and the other proxies in a cave system, which are fundamental for interpretating the paleoclimatic signals. We then introduce the oxygen isotope records of Japanese caves. Some of the Japanese stalagmites demonstrated a δ<sup>18</sup>O profile that represented a similar pattern to the Chinese stalagmite records, but had relatively small δ<sup>18</sup>O amplitudes, which can be explained mainly by temperature changes rather than the amount effect. This demands a reversal of the relationship between climate and rainwater δ<sup>18</sup>O across the Japanese Islands. Using δ<sup>18</sup>O data for rainwater samples from four sites in Japan (in Niigata, Fukuoka, Gifu and Mie Prefectures), we presents the results of model calculations to verify how the rainfall intensity and the seasonality relate with the δ<sup>18</sup>O of rainwater. A significant correlation coefficient was observed in Niigata, where the rainfall δ<sup>18</sup>O decreases with an increase in the annual amount of rainfall, and with a decrease in the winter rainfall. Similar trends were observed in Fukuoka, whereas while the results of Gifu and Mie exhibited no significant trends. Temperature change was would be the main factor controlling the stalagmite δ<sup>18</sup>O at the latter two sites. For a better understanding of the stalagmite δ<sup>18</sup>O records, the measurement of fluid inclusions and carbonate clumped isotopes can be used to evaluate the effect of temperature on the stalagmite δ<sup>18</sup>O, as well as to reconstruct the water δ<sup>18</sup>O. We predict that the <sup>17</sup>O excess in stalagmites reconstructs the seasonal shift in the vapor sources.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.12491","citationCount":"1","resultStr":"{\"title\":\"Oxygen isotopes of the Japanese stalagmites as global and local paleoclimate proxies\",\"authors\":\"Akihiro Kano, Hirokazu Kato, Akira Murata\",\"doi\":\"10.1111/iar.12491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stalagmite oxygen isotopes (δ<sup>18</sup>O) have been used to reconstruct terrestrial paleoclimates during the late Pleistocene and Holocene. However, the interpretation of the δ<sup>18</sup>O is not straightforward when determining the factor controlling δ<sup>18</sup>O; temperature or water δ<sup>18</sup>O. In addition, the water δ<sup>18</sup>O changes with rainfall intensity (amount effect), rainfall seasonality, and some other factors. Here, we first review the hydrochemical processes and behaviors of the oxygen isotopes and the other proxies in a cave system, which are fundamental for interpretating the paleoclimatic signals. We then introduce the oxygen isotope records of Japanese caves. Some of the Japanese stalagmites demonstrated a δ<sup>18</sup>O profile that represented a similar pattern to the Chinese stalagmite records, but had relatively small δ<sup>18</sup>O amplitudes, which can be explained mainly by temperature changes rather than the amount effect. This demands a reversal of the relationship between climate and rainwater δ<sup>18</sup>O across the Japanese Islands. Using δ<sup>18</sup>O data for rainwater samples from four sites in Japan (in Niigata, Fukuoka, Gifu and Mie Prefectures), we presents the results of model calculations to verify how the rainfall intensity and the seasonality relate with the δ<sup>18</sup>O of rainwater. A significant correlation coefficient was observed in Niigata, where the rainfall δ<sup>18</sup>O decreases with an increase in the annual amount of rainfall, and with a decrease in the winter rainfall. Similar trends were observed in Fukuoka, whereas while the results of Gifu and Mie exhibited no significant trends. Temperature change was would be the main factor controlling the stalagmite δ<sup>18</sup>O at the latter two sites. For a better understanding of the stalagmite δ<sup>18</sup>O records, the measurement of fluid inclusions and carbonate clumped isotopes can be used to evaluate the effect of temperature on the stalagmite δ<sup>18</sup>O, as well as to reconstruct the water δ<sup>18</sup>O. We predict that the <sup>17</sup>O excess in stalagmites reconstructs the seasonal shift in the vapor sources.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.12491\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12491\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12491","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Oxygen isotopes of the Japanese stalagmites as global and local paleoclimate proxies
Stalagmite oxygen isotopes (δ18O) have been used to reconstruct terrestrial paleoclimates during the late Pleistocene and Holocene. However, the interpretation of the δ18O is not straightforward when determining the factor controlling δ18O; temperature or water δ18O. In addition, the water δ18O changes with rainfall intensity (amount effect), rainfall seasonality, and some other factors. Here, we first review the hydrochemical processes and behaviors of the oxygen isotopes and the other proxies in a cave system, which are fundamental for interpretating the paleoclimatic signals. We then introduce the oxygen isotope records of Japanese caves. Some of the Japanese stalagmites demonstrated a δ18O profile that represented a similar pattern to the Chinese stalagmite records, but had relatively small δ18O amplitudes, which can be explained mainly by temperature changes rather than the amount effect. This demands a reversal of the relationship between climate and rainwater δ18O across the Japanese Islands. Using δ18O data for rainwater samples from four sites in Japan (in Niigata, Fukuoka, Gifu and Mie Prefectures), we presents the results of model calculations to verify how the rainfall intensity and the seasonality relate with the δ18O of rainwater. A significant correlation coefficient was observed in Niigata, where the rainfall δ18O decreases with an increase in the annual amount of rainfall, and with a decrease in the winter rainfall. Similar trends were observed in Fukuoka, whereas while the results of Gifu and Mie exhibited no significant trends. Temperature change was would be the main factor controlling the stalagmite δ18O at the latter two sites. For a better understanding of the stalagmite δ18O records, the measurement of fluid inclusions and carbonate clumped isotopes can be used to evaluate the effect of temperature on the stalagmite δ18O, as well as to reconstruct the water δ18O. We predict that the 17O excess in stalagmites reconstructs the seasonal shift in the vapor sources.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.