{"title":"建筑抗震设计结构分析方法的比较","authors":"R. Latifi, M. Hadzima-Nyarko","doi":"10.12989/EAS.2021.20.5.531","DOIUrl":null,"url":null,"abstract":"Several seismic analysis procedures in the latest standards have been developed for structural design and assessment. Since these methods have different advantages and limitations, a comprehensive comparison of these procedures is required to select the most effective one. The three most common methods are the Equivalent Lateral Force (ELF) method, Modal Response Spectrum (MRS) analysis, and Linear Response History (LRH) analysis. This research intends to present a comparative study of these methods, according to ASCE 7-16 standard by utilizing ETABSR software. They were examined in terms of base shear and distribution of story shear forces for a sixth-story reinforced concrete (RC) building, designed according to ACI 318-19 standard. Building code requirements for RC structures with the dual lateral force-resisting system in a high seismic zone are discussed. The results show that the ELF procedure's base shear for the building under consideration is conservative compared to the MRS or LRH analysis. The vertical distribution of the ELF procedure is just a function of the structure's fundamental period; however, the advantage of the MRS and LRH analysis is that they provide information as to how the distribution of mass and stiffness of a structure influences the member forces and displacements.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of structural analyses procedures for earthquake-resistant design of buildings\",\"authors\":\"R. Latifi, M. Hadzima-Nyarko\",\"doi\":\"10.12989/EAS.2021.20.5.531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several seismic analysis procedures in the latest standards have been developed for structural design and assessment. Since these methods have different advantages and limitations, a comprehensive comparison of these procedures is required to select the most effective one. The three most common methods are the Equivalent Lateral Force (ELF) method, Modal Response Spectrum (MRS) analysis, and Linear Response History (LRH) analysis. This research intends to present a comparative study of these methods, according to ASCE 7-16 standard by utilizing ETABSR software. They were examined in terms of base shear and distribution of story shear forces for a sixth-story reinforced concrete (RC) building, designed according to ACI 318-19 standard. Building code requirements for RC structures with the dual lateral force-resisting system in a high seismic zone are discussed. The results show that the ELF procedure's base shear for the building under consideration is conservative compared to the MRS or LRH analysis. The vertical distribution of the ELF procedure is just a function of the structure's fundamental period; however, the advantage of the MRS and LRH analysis is that they provide information as to how the distribution of mass and stiffness of a structure influences the member forces and displacements.\",\"PeriodicalId\":49080,\"journal\":{\"name\":\"Earthquakes and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquakes and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/EAS.2021.20.5.531\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.20.5.531","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A comparison of structural analyses procedures for earthquake-resistant design of buildings
Several seismic analysis procedures in the latest standards have been developed for structural design and assessment. Since these methods have different advantages and limitations, a comprehensive comparison of these procedures is required to select the most effective one. The three most common methods are the Equivalent Lateral Force (ELF) method, Modal Response Spectrum (MRS) analysis, and Linear Response History (LRH) analysis. This research intends to present a comparative study of these methods, according to ASCE 7-16 standard by utilizing ETABSR software. They were examined in terms of base shear and distribution of story shear forces for a sixth-story reinforced concrete (RC) building, designed according to ACI 318-19 standard. Building code requirements for RC structures with the dual lateral force-resisting system in a high seismic zone are discussed. The results show that the ELF procedure's base shear for the building under consideration is conservative compared to the MRS or LRH analysis. The vertical distribution of the ELF procedure is just a function of the structure's fundamental period; however, the advantage of the MRS and LRH analysis is that they provide information as to how the distribution of mass and stiffness of a structure influences the member forces and displacements.
期刊介绍:
The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response