{"title":"CrMnFeCoNi高熵合金中组成元素有效原子半径的实验测定","authors":"T. Teramoto, Momoko Narasaki, Katsushi Tanaka","doi":"10.1080/09500839.2021.2024290","DOIUrl":null,"url":null,"abstract":"ABSTRACT To elucidate the complex mechanism of solid-solution strengthening in high-entropy alloys (HEAs), it is necessary to determine the effective atomic radii of the constituent elements that are the sources of lattice strain. In the present study, the effective atomic radii of the constituent elements in CrMnFeCoNi HEA that are the basis of the atomic displacements, are evaluated from lattice parameters experimentally determined via θ–2θ X-ray diffraction measurements. The order of the evaluated atomic radii in the present study is different from that of the atomic radii determined via ab-initio calculations in previous studies. The results of the ab-initio calculations indicate a correlation between the yield stress of and the average atomic displacement in the HEA. However, no definite correlation is confirmed by the experimental results in the present study.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"102 1","pages":"100 - 110"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental determination of effective atomic radii of constituent elements in CrMnFeCoNi high-entropy alloy\",\"authors\":\"T. Teramoto, Momoko Narasaki, Katsushi Tanaka\",\"doi\":\"10.1080/09500839.2021.2024290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT To elucidate the complex mechanism of solid-solution strengthening in high-entropy alloys (HEAs), it is necessary to determine the effective atomic radii of the constituent elements that are the sources of lattice strain. In the present study, the effective atomic radii of the constituent elements in CrMnFeCoNi HEA that are the basis of the atomic displacements, are evaluated from lattice parameters experimentally determined via θ–2θ X-ray diffraction measurements. The order of the evaluated atomic radii in the present study is different from that of the atomic radii determined via ab-initio calculations in previous studies. The results of the ab-initio calculations indicate a correlation between the yield stress of and the average atomic displacement in the HEA. However, no definite correlation is confirmed by the experimental results in the present study.\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"102 1\",\"pages\":\"100 - 110\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2021.2024290\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.2024290","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental determination of effective atomic radii of constituent elements in CrMnFeCoNi high-entropy alloy
ABSTRACT To elucidate the complex mechanism of solid-solution strengthening in high-entropy alloys (HEAs), it is necessary to determine the effective atomic radii of the constituent elements that are the sources of lattice strain. In the present study, the effective atomic radii of the constituent elements in CrMnFeCoNi HEA that are the basis of the atomic displacements, are evaluated from lattice parameters experimentally determined via θ–2θ X-ray diffraction measurements. The order of the evaluated atomic radii in the present study is different from that of the atomic radii determined via ab-initio calculations in previous studies. The results of the ab-initio calculations indicate a correlation between the yield stress of and the average atomic displacement in the HEA. However, no definite correlation is confirmed by the experimental results in the present study.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.