{"title":"应用质量功能展开法设计低温管道系统","authors":"A. Khan, S. Ahmed, Md. Sumon Rahman, M. Islam","doi":"10.1504/IJQET.2021.10036430","DOIUrl":null,"url":null,"abstract":"Cryogenic piping system is a delicate product. If it is not designed properly, i.e., without considering region specific weather condition, vapourisation will occur at undesirable rate while cryogenic fluid flows through the pipeline. In this work, optimum design for a cryogenic piping system has been explored. To identify existing design limitations as well as customer priorities, quality function deployment has been employed. Data have been collected from local customers and experts through questionnaire-based survey. Double-concentric-pipes type construction with inner pipe diameter of 21.34-33.40 mm and outer pipe diameter of 88.90-193.68 mm has been considered. Four potential insulating mediums; multilayer insulation, vacuum, polyethylene foam, and perlite have been investigated. Multilayer insulation thickness and vacuum pressure have been varied from 6-30 mm and 10−5−5 mbar respectively. Results reveal that use of multilayer insulation accompanied by vacuum pressure of 10−4 mbar ensures optimum performance with optimum insulation thickness of 20 mm.","PeriodicalId":38209,"journal":{"name":"International Journal of Quality Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying quality function deployment for designing a cryogenic piping system\",\"authors\":\"A. Khan, S. Ahmed, Md. Sumon Rahman, M. Islam\",\"doi\":\"10.1504/IJQET.2021.10036430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryogenic piping system is a delicate product. If it is not designed properly, i.e., without considering region specific weather condition, vapourisation will occur at undesirable rate while cryogenic fluid flows through the pipeline. In this work, optimum design for a cryogenic piping system has been explored. To identify existing design limitations as well as customer priorities, quality function deployment has been employed. Data have been collected from local customers and experts through questionnaire-based survey. Double-concentric-pipes type construction with inner pipe diameter of 21.34-33.40 mm and outer pipe diameter of 88.90-193.68 mm has been considered. Four potential insulating mediums; multilayer insulation, vacuum, polyethylene foam, and perlite have been investigated. Multilayer insulation thickness and vacuum pressure have been varied from 6-30 mm and 10−5−5 mbar respectively. Results reveal that use of multilayer insulation accompanied by vacuum pressure of 10−4 mbar ensures optimum performance with optimum insulation thickness of 20 mm.\",\"PeriodicalId\":38209,\"journal\":{\"name\":\"International Journal of Quality Engineering and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJQET.2021.10036430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJQET.2021.10036430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Applying quality function deployment for designing a cryogenic piping system
Cryogenic piping system is a delicate product. If it is not designed properly, i.e., without considering region specific weather condition, vapourisation will occur at undesirable rate while cryogenic fluid flows through the pipeline. In this work, optimum design for a cryogenic piping system has been explored. To identify existing design limitations as well as customer priorities, quality function deployment has been employed. Data have been collected from local customers and experts through questionnaire-based survey. Double-concentric-pipes type construction with inner pipe diameter of 21.34-33.40 mm and outer pipe diameter of 88.90-193.68 mm has been considered. Four potential insulating mediums; multilayer insulation, vacuum, polyethylene foam, and perlite have been investigated. Multilayer insulation thickness and vacuum pressure have been varied from 6-30 mm and 10−5−5 mbar respectively. Results reveal that use of multilayer insulation accompanied by vacuum pressure of 10−4 mbar ensures optimum performance with optimum insulation thickness of 20 mm.
期刊介绍:
IJQET fosters the exchange and dissemination of research publications aimed at the latest developments in all areas of quality engineering. The thrust of this international journal is to publish original full-length articles on experimental and theoretical basic research with scholarly rigour. IJQET particularly welcomes those emerging methodologies and techniques in concise and quantitative expressions of the theoretical and practical engineering and science disciplines.