S. Alummoottil, M. van Rooy, J. Bester, C. Grobbelaar, A. Phulukdaree
{"title":"特应性哮喘患者红细胞的扫描电子和原子力显微镜分析-一项初步研究","authors":"S. Alummoottil, M. van Rooy, J. Bester, C. Grobbelaar, A. Phulukdaree","doi":"10.3390/hemato4010009","DOIUrl":null,"url":null,"abstract":"Background: Non-communicable diseases are often associated with chronic inflammation, placing patients suffering from these conditions at a higher risk of thrombosis and other complications. The pathophysiology of asthma and/or atopic asthma is also linked to chronic inflammation, which consequently may alter blood parameters including erythrocyte structure and function. Methodology: The objective of this study was to evaluate differences in erythrocytes between patients with atopic asthma (n = 30) and healthy individuals (n = 30) by evaluating routine haematological parameters; structures and axial ratios of erythrocytes using light microscopy; erythrocyte membrane elasticity using atomic force microscopy; and erythrocyte ultrastructure using scanning electron microscopy. Results: The haematological findings of healthy participants and patients suffering from asthma were within normal clinical ranges together with significantly higher levels of circulating monocytes (p = 0.0066), erythrocytes (p = 0.0004), haemoglobin (p = 0.0057), and haematocrit (p = 0.0049) in asthma patients. The analysis of eosin-stained erythrocytes by light microscopy showed more echinocytes, acanthocytes, and ovalocytes compared to controls and a significant difference in axial ratios (p < 0.0001). Atomic force microscopy findings showed reduced erythrocyte membrane elasticity in asthmatic erythrocytes (p = 0.001). Ultrastructural differences in erythrocytes were visible in the asthma group compared to controls. Conclusion: Altered erythrocyte ultrastructural morphology and a significant change in the haematological profile are evident in atopic asthma and may influence common complications associated with asthma. The impact of these changes on the physiological mechanisms of coagulation and the pathophysiology of asthma needs to be further elucidated.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scanning Electron and Atomic Force Microscopic Analysis of Erythrocytes in a Cohort of Atopic Asthma Patients—A Pilot Study\",\"authors\":\"S. Alummoottil, M. van Rooy, J. Bester, C. Grobbelaar, A. Phulukdaree\",\"doi\":\"10.3390/hemato4010009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Non-communicable diseases are often associated with chronic inflammation, placing patients suffering from these conditions at a higher risk of thrombosis and other complications. The pathophysiology of asthma and/or atopic asthma is also linked to chronic inflammation, which consequently may alter blood parameters including erythrocyte structure and function. Methodology: The objective of this study was to evaluate differences in erythrocytes between patients with atopic asthma (n = 30) and healthy individuals (n = 30) by evaluating routine haematological parameters; structures and axial ratios of erythrocytes using light microscopy; erythrocyte membrane elasticity using atomic force microscopy; and erythrocyte ultrastructure using scanning electron microscopy. Results: The haematological findings of healthy participants and patients suffering from asthma were within normal clinical ranges together with significantly higher levels of circulating monocytes (p = 0.0066), erythrocytes (p = 0.0004), haemoglobin (p = 0.0057), and haematocrit (p = 0.0049) in asthma patients. The analysis of eosin-stained erythrocytes by light microscopy showed more echinocytes, acanthocytes, and ovalocytes compared to controls and a significant difference in axial ratios (p < 0.0001). Atomic force microscopy findings showed reduced erythrocyte membrane elasticity in asthmatic erythrocytes (p = 0.001). Ultrastructural differences in erythrocytes were visible in the asthma group compared to controls. Conclusion: Altered erythrocyte ultrastructural morphology and a significant change in the haematological profile are evident in atopic asthma and may influence common complications associated with asthma. The impact of these changes on the physiological mechanisms of coagulation and the pathophysiology of asthma needs to be further elucidated.\",\"PeriodicalId\":93705,\"journal\":{\"name\":\"Hemato\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hemato\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hemato4010009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemato","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hemato4010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Scanning Electron and Atomic Force Microscopic Analysis of Erythrocytes in a Cohort of Atopic Asthma Patients—A Pilot Study
Background: Non-communicable diseases are often associated with chronic inflammation, placing patients suffering from these conditions at a higher risk of thrombosis and other complications. The pathophysiology of asthma and/or atopic asthma is also linked to chronic inflammation, which consequently may alter blood parameters including erythrocyte structure and function. Methodology: The objective of this study was to evaluate differences in erythrocytes between patients with atopic asthma (n = 30) and healthy individuals (n = 30) by evaluating routine haematological parameters; structures and axial ratios of erythrocytes using light microscopy; erythrocyte membrane elasticity using atomic force microscopy; and erythrocyte ultrastructure using scanning electron microscopy. Results: The haematological findings of healthy participants and patients suffering from asthma were within normal clinical ranges together with significantly higher levels of circulating monocytes (p = 0.0066), erythrocytes (p = 0.0004), haemoglobin (p = 0.0057), and haematocrit (p = 0.0049) in asthma patients. The analysis of eosin-stained erythrocytes by light microscopy showed more echinocytes, acanthocytes, and ovalocytes compared to controls and a significant difference in axial ratios (p < 0.0001). Atomic force microscopy findings showed reduced erythrocyte membrane elasticity in asthmatic erythrocytes (p = 0.001). Ultrastructural differences in erythrocytes were visible in the asthma group compared to controls. Conclusion: Altered erythrocyte ultrastructural morphology and a significant change in the haematological profile are evident in atopic asthma and may influence common complications associated with asthma. The impact of these changes on the physiological mechanisms of coagulation and the pathophysiology of asthma needs to be further elucidated.