{"title":"非阶梯式和双阶梯式船体在激流中的动力特性比较:数值研究","authors":"Arman Esfandiari, S. Tavakoli, A. Dashtimanesh","doi":"10.5957/JSPD.11170053","DOIUrl":null,"url":null,"abstract":"Reducing vertical motions of high-speed planing hulls in rough water is one of the most important factors that help a boat to become more operable, and will benefit the structure of the boat and the crew on board. In the recent decade, stepped planing hulls have been investigated with emphasis on their better performance in calm water than that of nonstepped planing hulls. However, there are still doubts about their performance in rough water. In this study, we investigate this problem by providing numerical simulations for motions of a double-stepped and a non-stepped planing hull in a vertical plane when they encounter head waves. The problem will be solved using the finite volume method and volume of fluid method. To this end, a numerical computational fluid dynamics code (STARCCM1) has been used. Accuracy of the numerical simulations is evaluated by comparing their outcome with available experimental data. The dynamic response of the investigated hulls has been numerically modeled for two different wave lengths, one of which is smaller than the boat length and the other which is larger than the boat length. Using the numerical simulations, heave and pitch motions as well as vertical acceleration are found. It has been found that at wave lengths larger than the boat length, heave amplitude decreases by 10–40%when two steps are added to the bottom of a vessel. It has also been observed that pitch of a planing hull is reduced by 18–32% in the presence of the two steps on its bottom. Finally, it has been observed that for wave lengths larger than the boat length, the maximum vertical acceleration decreases by a gravitational acceleration of about .2–.7.","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Comparison between the Dynamic Behavior of the Non-stepped and Double-stepped Planing Hulls in Rough Water: A Numerical Study\",\"authors\":\"Arman Esfandiari, S. Tavakoli, A. Dashtimanesh\",\"doi\":\"10.5957/JSPD.11170053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing vertical motions of high-speed planing hulls in rough water is one of the most important factors that help a boat to become more operable, and will benefit the structure of the boat and the crew on board. In the recent decade, stepped planing hulls have been investigated with emphasis on their better performance in calm water than that of nonstepped planing hulls. However, there are still doubts about their performance in rough water. In this study, we investigate this problem by providing numerical simulations for motions of a double-stepped and a non-stepped planing hull in a vertical plane when they encounter head waves. The problem will be solved using the finite volume method and volume of fluid method. To this end, a numerical computational fluid dynamics code (STARCCM1) has been used. Accuracy of the numerical simulations is evaluated by comparing their outcome with available experimental data. The dynamic response of the investigated hulls has been numerically modeled for two different wave lengths, one of which is smaller than the boat length and the other which is larger than the boat length. Using the numerical simulations, heave and pitch motions as well as vertical acceleration are found. It has been found that at wave lengths larger than the boat length, heave amplitude decreases by 10–40%when two steps are added to the bottom of a vessel. It has also been observed that pitch of a planing hull is reduced by 18–32% in the presence of the two steps on its bottom. Finally, it has been observed that for wave lengths larger than the boat length, the maximum vertical acceleration decreases by a gravitational acceleration of about .2–.7.\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JSPD.11170053\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JSPD.11170053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Comparison between the Dynamic Behavior of the Non-stepped and Double-stepped Planing Hulls in Rough Water: A Numerical Study
Reducing vertical motions of high-speed planing hulls in rough water is one of the most important factors that help a boat to become more operable, and will benefit the structure of the boat and the crew on board. In the recent decade, stepped planing hulls have been investigated with emphasis on their better performance in calm water than that of nonstepped planing hulls. However, there are still doubts about their performance in rough water. In this study, we investigate this problem by providing numerical simulations for motions of a double-stepped and a non-stepped planing hull in a vertical plane when they encounter head waves. The problem will be solved using the finite volume method and volume of fluid method. To this end, a numerical computational fluid dynamics code (STARCCM1) has been used. Accuracy of the numerical simulations is evaluated by comparing their outcome with available experimental data. The dynamic response of the investigated hulls has been numerically modeled for two different wave lengths, one of which is smaller than the boat length and the other which is larger than the boat length. Using the numerical simulations, heave and pitch motions as well as vertical acceleration are found. It has been found that at wave lengths larger than the boat length, heave amplitude decreases by 10–40%when two steps are added to the bottom of a vessel. It has also been observed that pitch of a planing hull is reduced by 18–32% in the presence of the two steps on its bottom. Finally, it has been observed that for wave lengths larger than the boat length, the maximum vertical acceleration decreases by a gravitational acceleration of about .2–.7.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.